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§1 May 16, 2017

§1.1 Course Contents

In this class, we will cover Processes, Threads, Concurrency, Scheduling, Deadlock,
Memory, File systems, Input/output, and Multiple Processor Systems.

§1.2 Introduction to Operating Systems

An Operating System (OS) is essentially just another piece of software that sits
between applications and hardware. Its purpose is to make it easier to write applications.
The OS deals with many familiar issues:

• Performance: CPU, Memory, etc.

• Resource Utilization: Scheduling, Management, etc.

• Security: Protection, Operation Mode, etc.

Understanding OS is the key to system programming. Useful techniques regarding data
structures, conflict resolution, concurrency, resource management, and communication
will be discussed. We use different operating systems every day. For instance,

• Mainframe OS allow for batch, transaction processing, and time sharing services.

• Server OS allow for multi-users, and the sharing of hardware/software. For
example, Solaris, FreeBSD, Linux, Mac OS Server and Windows Server.

• Multiprocessor OS support parallel computing. For instance, Windows, Linux,
and Mac OS.

• Personal Computer (PC) OS support a single user on various tasks. For
instance, Windows, Linux, and Mac OS.

• Mobile OS begin to resemble PC OS. For example, iPhone, Samsung Galaxy, etc.

• Embedded OS contain no untrusted software support. They are used in TVs,
cars, cell phones, and MP3 players.

• Sensor Node OS are event driven, special-purpose. They may be used to detect
forest fires, measure temperature, etc.

• Real-Time OS are deadline driven. They are used in assembly line and multimedia
systems.

• Smart Card OS are very primitive. They use proprietary systems. An example
would be those used on credit cards.

The OS provides common functions for controlling and allocating resources for appli-
cation programs. The application programs use hardware, but hardware is notoriously
difficult to use at low level. The OS thus provides controlled allocation for efficient
and fair resource use. It hides the complexity of the underlying hardware and give the
user/applications a better view of the computer.

While there is no precise definition of an Operating System, it is essentially a layer of
software that provides application programs with a better, simpler, cleaner, model of
the computer (hardware). It manages all of the resources, and is the software that runs
all the time (in kernel mode). There are many ways to define an OS, including as an
extended machine, and as a resource manager:
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1. As an extended machine, abstraction/generalization is the key to managing com-
plexity. The first step is defining and implementing the abstraction. For example,
files such as pictures, emails, and webpage are easier to deal with than raw disk
space. The second step is using the abstractions to solve problems, such as editing
files. The OS masks the ugly hardware and provides a beautiful interface. Some
notable operating systems include Windows, Mac OS, Linux Gnome and KDE.
Many OS concepts are abstractions.

2. As a resource allocator, it can multiplex resources. Multiplex in time concerns
multiple programs trying to use the same resource (spooling), and multiple programs
trying to run at the same time (scheduling). Multiplex in space concerns the
programs allocating memory. It also manages conflicts among multiple programs
or users. It can be thought of as a control program that controls the execution
of programs (such as interrupts), and prevents errors and improper use (such as
traps).

§1.3 History of Operating Systems

The first OS was invented in the 1950s. Unix and Apple OS first appeared in the 1970s.

1. First Generation (1945-1955) Vacuum Tubes: Programs were hard-wired
or on punch cards. Programs were written in machine language, and involved
complicated wiring. There was no OS (since there was no need), and programs
only included basic numerical calculations.

2. Second Generation (1955-1965) Transistors and Batch Systems: This
included mainframe computers. FORTRAN programs were written on punch cards.
Some operating systems that developed include FMS (Fortran Monitor System)
and IBSYS (IBM’s OS). An important concept introduced was batch systems. A
batch system consists of a card reader, a tape drive, an input tape, a system tape,
an output tape, and a printer. The IBM 1401 consisted of the card reader and tape
drive that converted the instruction to magnetic tape. The IBM 7094 would then
operate on the input tape and produce an output tape. Another IBM 1401 would
then take this output tape and print the results. A typical FMS job consists of a
job description, followed by the type of language, followed by the program, a load
instruction, a run instruction, data for the program, and an indication that this is
the end of the job.

3. Third Generation (1965-1980) Integrated Circuits and Multiprogram-
ming: These systems use ICs (Integrated Circuits). OS developed in this time
include IBM OS/360, CTSS (by MIT), MULTICS (today’s client-server model),
and UNIX (one-user version of MULTICS), and Linux. Some important concepts
are:

• Multiprogramming: A different job is executed in each memory partition.
The CPU executes other jobs while waiting for the I/O of some jobs. As
opposed to running a single program at a time where the CPU is idle while
parts of a program are being run, multiprogramming allows the CPU to be
used more efficiently by running parts of other programs while the CPU would
otherwise be sitting idle.

• Spooling (Simultaneous Peripheral Operation On Line): Jobs are
read from cards to disk, and jobs are loaded from the disk automatically, so
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no more tapes are required. This is a way of dealing with slow devices and
peripherals, as fast devices enter instructions to the spooler, which then feeds
this information to a slower device. The computer can therefore send the
information to the printer at its maximum speed, without needing to wait for
the printer to finish.

• Timesharing: Interactive service to multiple users and work on big batch
jobs in the background.

4. Fourth Generation (1980-Present) Personal Computers: Cheap mass-produced
computers leads to friendly shells on top of the OS. This includes Windows, Mac
OS, GNOME, and KDE.

5. Fifth Generation (1990-Present) Mobile Computers

§2 May 18, 2017

§2.1 Hardware

Common components of a desktop computer include the CPU, memory, video controller
(monitor), USB controller (keyboard and mouse), and the HD controller (hard disk).

• CPU is the brain of the computer. CPU registers are on-board registers that
are used for faster computation. Accessing information in registers is orders of
magnitude faster than from memory. There are also some special purpose registers:

– Program Counter contains the memory address of the next instruction to
be fetched.

– Stack Pointer points to the top of the current stack in memory.

– Status Register indicates the interrupt flag, privilege mode, zero flag, carry
flag, etc.

A CPU cycle consists of fetching an instruction from memory, decoding it to
determine its type and operands, and executing the instructions. These steps are
repeated for the next instruction until the program finishes. A performance problem
arises since fetching from memory takes longer than executing an instruction. The
solution is to pipeline the operations. That is, while executing instruction n, the
CPU could be decoding instruction n + 1 and fetching instruction n + 2. To
implement this, we make use of independent fetch, decode, and execute units. The
three stage pipeline goes from the Fetch unit to the Decode unit, and finally to the
Execute unit. The advantage of this is that the CPU can now execute more than
one instruction at a time, and essentially hide the memory access time. However,
this comes at the cost of more complexity. A superscalar CPU has multiple FDE
instructions, with the Fetch units sending to their respective Decode units, which
all send to the Buffer before being sent from the Buffer to the respective Execute
units.

• Memory should be ideally fast, large, and cheap. In practice, we can generally
obtain two of the three conditions simultaneously. Main memory is random access
memory (RAM). Memory consists of an array of words, where each word has
its own memory address. The operations that can be performed in memory are
load, where a word is moved from memory to the CPU register, and store, where
the contents of a register are moved to memory. Both load and store are slow
operations compared to the speed of the CPU.
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Typical access time (speed) Component Typical capacity (cost per byte)

1 nsec Registers < 1 KB
2 nsec Cache 4 MB
10 nsec Main memory 1− 8 GB
10 msec Magnetic Disk 1− 4 TB

Most heavily used data from memory is kept in a high-speed cache located inside
or very close to the CPU. When the CPU needs to obtain data from memory, it
first checks the cache. This process is known as CPU caching. A cache hit occurs
when the data needed by the CPU is in the cache, while a cache miss occurs when
the CPU needs to fetch the data from main memory. The following are two types
of CPU caches:

1. L1 cache (16KB) are always inside the CPU and usually feeds decoded in-
structions into the CPU execution engine.

2. L2 cache (xMB) are used for recently used memory words. It is slower than
L1.

Example 2.1

A quad-core chip with a shared L2 cache would have 4 cores, each with their
own L1 cache. They would all be connected to a shared L2 cache. A quad-core
chip with separate L2 caches on the other hand, would have 4 cores, each with
their own L1 and L2 caches.

Caching is a very useful concept in general. The goal of caching is to increase
performance. This is usually done by copying information from slow storage to
faster storage (cache). There are many uses for caching, including for disk cache,
DNS, database, and memoization. The cache is fast but expensive, so it is usually
much smaller than slow storage. Some general caching issues are:

– When to put a new item into the cache.

– Which cache line to put the new item in.

– Which item to remove from the cache when the cache is full.

– Where to put a newly evicted item in the larger memory.

– Multiple cache synchronization.

– How long the data in the cache is valid (expiration).

Different applications require different solutions to these problems.

Memoization is similar to caching, and is an optimization technique used to speed
up programs, but at the cost of storing results of expensive computations.

• Input and Output Devices usually consist of two parts, the device controller
and the device. The device controller is a chip or a set of chips that physically
control the device. Controlling the device is complicated, and the CPU could be
doing other things, so the controller presents a simpler interface to the OS. There
are many different types of controllers, such as those for video, USB, and hard
disks. The device connects to the computer through the controller. It follows
some communication standard. The device driver is the software that talks to a
controller, issues commands, and accepts responses. It is usually written by the
controller manufacturer and follows some abstraction. It is needed so that the OS
knows how to communicate with a controller (often in the form of modules).
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• Buses are a communication system for transferring data between computer com-
ponents. Modern computer systems have multiple buses, such as cache, memory,
PCI, and ISA. Each type of bus has a different transfer rate and function. The OS
must be aware of all of them for configuration and management. For example, it
collects information about the I/O devices, and assigns interrupt levels and I/O
addresses. Much of this is done during the boot process.

§2.2 Booting

When a computer is booted, the BIOS is started. BIOS (Basic Input Output System)
is a program on the motherboard. It does the following:

1. Check RAM, keyboard, other devices by scanning the ISA and PCI buses.

2. Record the interrupt levels and I/O addresses of the devices, or configure new ones.

3. Determine the boot device by trying against the list of devices stored in CMOS
memory.

4. Read the first sector from the boot device into the memory.

5. Read the secondary boot loader into the memory.

6. This loader reads in the OS from the active partition and starts it.

7. The OS queries the BIOS to get the configuration information and initialize all
device drivers in the kernel.

8. The OS creates the device table and necessary background processes, then wait for
I/O events.

The kernel is a basic unit of the operating system. It is the program that is running
at all times on the computer. System programs are part of the OS, while application
programs are not. The kernel is running at all times in the sense that it is listening and
responding to events from hardware. The bootstrap program locates the kernel, loads it
into memory, and starts it.

This kernel runs in a kernel mode (unrestricted mode) where all instructions are
allowed, all input/output operations are allowed, and all memory can be accessed. Most
modern CPUs support at least two privilege levels. This is usually controlled by modifying
the status register. On CPUs without this support, there is only kernel mode. Kernel
mode concerns the OS (Linux, Windows, and Mac OS), and hardware (CPU, memory,
and I/O devices).

When the kernel runs a regular application, it runs it in a user mode. In user mode,
only a subset of operations are allowed. Accessing the status register is not allowed (as
this would allow one to run kernel mode). User mode concerns the compilers, assemblers,
text editors, databases, and application programs such as web browsers and media players.
These are the things that the users (human, computer, devices) interact with. Since
applications run in user mode, this means that applications cannot talk to hardware.
The applications must therefore ask the kernel for input and output. This cannot be
performed by a simple function call. Instead, this is done by invoking a trap, otherwise
known as making a system call.
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§2.3 Traps

A trap is usually a special instruction that switches from user mode to kernel mode and
invokes a predefined function such as SWI n, and INT n. It pauses the application and
executes a kernel routine configured by the OS. When the kernel routine is finished, user
mode is restored and the application resumes. This is very similar to an interrupt (often
called a software interrupt). There are several ways for the kernel to perform I/O:

• busy waiting / spinning / busy looping: The CPU instructs the disk to read
a file. The CPU then loops asking whether the disk is finished. If it is, we break
out of the loop. The CPU then instructs the disk to return the result. The problem
with this method is that the CPU is tied up while the slow I/O completes the
operation. We are therefore wasting power.

• busy wait with sleep: The CPU instructs the disk to read a file. The CPU then
loops a sleeping step, before asking whether the disk is finished. If it is, we break
out of the loop. The CPU then instructs the disk to return the result. In this
method, sleep could be detected by the OS, and the CPU could then run another
program. The problem with this method is that it is hard to estimate the right
amount of sleep, and the program might end up running longer than necessary.

• interrupts: The CPU instructs the disk to read a file. Then, it instructs the disk
to wake it up when it is finished. The CPU then instructs the disk to return the
result after a sleep step. When the I/O device finishes the operation, it generates
an interrupt to let the application know it is done, or if there was an error. Sleep
could be detected by OS, and the CPU could then run another program. The
problem with this method is that the I/O device must support interrupts. Most
devices support interrupts, and even those that do not can be connected through
controllers that do.

§2.4 Interrupts

Interrupts generally follow this procedure:

• The kernel talks to the device driver, requesting an operation.

• The device driver tells the controller what to do by writing onto its device registers.

• The controller starts the device and monitors its progress.

• When the controller has finished the job, it signals the interrupt controller.

• The interrupt controller informs the CPU and puts the device information on the
bus.

• The CPU suspends whatever it is doing, and handles the interrupt by executing
the appropriate interrupt handler (in kernel mode).

• The CPU then resumes its original operations.

The CPU can process other programs while waiting for I/O, but the CPU could be
interrupted for every single byte of I/O. Many devices/controllers have limited memory
and interrupts take many CPU cycles to save/resume the original operation. A better
solution would be to combine interrupts with direct memory access (DMA), resulting
in fewer interrupts and bulk data transmission between the controller and memory.
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DMA is facilitated through a special piece of hardware on most modern systems. It is
used for bulk data movement such as disk I/O. It is usually used with slow devices, so
the CPU can do other useful things. It is also used with some fast devices that could
overwhelm the CPU. The device controller transfers an entire block of data directly to
main memory without CPU intervention. Only one interrupt is generated per-block, and
is used to tell the device driver that the operation has completed.

§2.5 Summary of Traps and Interrupts

To summarize, interrupts are external events delivered to the CPU. They have origins in
I/O, timer, and user input. They are asynchronous with the current activity of the CPU,
and the time of the event is not known and unpredictable. On the other hand, traps are
internal events caused by system calls or error conditions (such as division by 0). They
are synchronous with the current activity of the CPU, and occurs during the execution
of a machine instruction.

Traps and interrupts also share many similarities. For instance, both put the CPU
in kernel mode, and both save the current state of the CPU. Traps and interrupts both
invoke a kernel procedure defined by the OS, and resume the original operations when
finished.

§2.6 OS Structure

In designing a kernel, the main problem is that code in the kernel runs faster, but big
kernels have more bugs and can lead to system instability. There are different kernel-wide
design approaches:

1. Monolithic kernels: The entire OS runs as a single program in kernel mode.
Monolithic kernels are faster, but contain more bugs, are harder to port, and are
potentially less stable. Examples include MS-DOS and Linux.

2. Microkernels : Only essential components run in kernel mode. The remaining
components are implemented as system and user-level programs that run in user
mode. Microkernels contain less bugs, are easier to port, easier to extend, and more
stable. They may be slower in comparison however. Examples include Mach and
QNX.

3. Modular (Hybrid) kernels: Consists of a small kernel with mostly essential
components and dynamically loadable modules. Recent versions of Windows and
MacOS fall under this category. Some parts of Linux are implemented as modules.
It follows a layered approach, where components are organized into a hierarchy
of layers, each constructed upon the one below it. This sounds good in theory, but
it is hard to define layers and requires careful planning. It is less efficient since each
layer adds overhead, and not all problems can be easily adapted into layers. Many
modern OS are hybrid systems.

Example 2.2

In Mac OS X, the top layer consists of the application environment and a
set of services providing GUI. The bottom layer is the kernel environment.
This is comprised of the Mach microkernel, which is responsible for memory
management, remote procedure calls (RPC), inter-process communication
(IPC), and thread scheduling, and the BSD kernel, which is responsible for the
BSD command line interface, networking, file systems, and POSIX APIs.
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§2.7 Virtual Machines

The fundamental idea of virtual machines is to abstract the hardware of a single
computer into several different execution environments. The host OS creates the illusion
that each process (guest OS) has its own processor with its own memory and devices.
Examples of virtual machines include VMWare, Java VM, UML (user mode linux), and
Docker. The hypervisor is software that runs the virtual machines:

• bare-metal hypervisors run directly on hardware. These are usually on big servers,
and are faster.

• hosted hypervisors run on top of another OS. These are usually on desktops, and
are slower.

• hybrid hypervisors combine aspects of bare-metal hypervisors with hosted hyper-
visors. The Linux kernel can function as a hypervisor through the virtualization
infrastructure of kernel based virtual machine (KVM).

There are many advantages associated with VM. Firstly, the host system is protected
from the VM, so it can run unsafe programs in the VM. Additionally, normal system
operation seldom needs to be disrupted from system development. Multiple different
OS can be run on the same computer concurrently. This is the perfect vehicle for OS
research and development. System consolidation also means that it could potentially save
a lot of money. For instance, one big server could be used instead of many smaller ones.

§3 May 23, 2017

§3.1 System Calls

We recall that the operating system provides access to hardware through abstractions,
and allows for resource management. It is accessible through system calls that are often
implemented through traps. Modern OS use other implementations that do not rely on
traps to perform system calls, but we will assume for this course that system calls are
performed through traps.

When an application wants to access a service or resource of the system:

1. The application issues an appropriate system call, which is a routine provided by
the OS.

2. Inside the system call, the OS switches from user mode to kernel mode (usually via
a trap).

3. The OS saves the application state.

4. The OS does the requested operation.

5. The OS switches back to user mode and restores the application state

6. The application resumes.

A system call provides an interface to the services made available by the OS. System
calls are accessed by the kernel. It can be thought of as an API provided by the OS. The
interface for system calls varies between different operating systems, but the underlying
concepts remain the same. The OS often executes thousands of system calls per second.
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Example 3.1 (Copying a File)

First, the input file name is acquired from printing a prompt to the screen and
accepting input. The output file name is acquired similarly. The system then
attempts to open the input file. If the file does not exist, then the operation is
aborted. The output file is then created. If the file already exists, then the operation
aborts. A loop is then run to read from the input file and subsequently write to the
output file. When read or write fails, the input and output files are closed. Finally,
a completion message is sent to the screen, and the operation is terminated normally.
We note that there are many system calls, even for simple programs.

System calls are minimalistic, and not very easy to use. Many system calls are
implemented in assembly, and optimized for performance. The system call number is
used to perform an operation, and parameters are usually passed in registers. This can
be cumbersome to use from higher level languages. The OS often provides libraries for
applications to use to access system calls. On Unix-like systems, this is usually libc,
which is a C library. For C++, this is through libstdc++ or libc++.

§3.2 Libraries

A library provides a set of functions that are available to an application programmer,
including the parameters and the return values (APIs). An application can compile and
run on any system that supports the same API. APIs hide the implementation details,
such as the implementation of system calls. This makes system calls easier and more
convenient. Some common API include the Win32 API for Windows, the POSIX API
for POSIX-based system (Unix, Linux, and Mac OS X), and the Java API for the Java
virtual machine. There is usually a strong correlation between a function in the API and
its associated system call within the kernel, but the API is not the same as the system
call.

Example 3.2 (printf)

The standard C library provides a portion of the system-call interface. For the
printf() function, the C library intercepts the call and invokes the necessary system
call write. The C library then takes the value returned by write and passes it back
to the user program.

Higher level API often hide the implementation of system call. They are usually
implemented through a system call table, which is a table of all system calls indexed
by a unique number associated with each system call. Thus, when the user application
uses a function, the library functions are then called, which then refers to the system
call interface (trap, syscall, etc) that implements the system call. This last component
of the system call interface acts as a black box, as there is no need to know how the
system call works, and only a need to obey the API and understand the functionality of
the calls.

12



David Ng (July 4, 2017) Principles of Operating Systems

Example 3.3 (read())

The function read() is implemented in common libraries. It takes as parameters
the file descriptor, buffer, and number of bytes. In the user space, the user program
calls read by first pushing the number of bytes, then the buffer, followed by the
file descriptor. It then called read. The library read procedure then puts the code
for read in the register, and traps to the kernel. In the kernel space (operating
system), it dispatches, performs some operation, then goes to the sys call handler.
This returns to the library procedure read in the user space, which then returns to
the caller. Back in the user program calling the read, the SP is incremented.

§3.3 Tracing System Calls

To trace system calls, we use strace for Linux, truss for Solaris, and dtruss for Mac
OS. On Windows, system calls can be found through the Windows Performance Analysis
Tools. Different OS handle programs and commands differently. Thus, the same program
or command may invoke different sets of system calls. For more information on these
commands, we can refer to the man page. The -c option can be included to obtain a
summary of all the system calls used.

§3.4 Processes

Processes are a key concept in all operating systems. They can be thought of as a
program in execution. Processes are associated with an address space, a set of resources,
a program counter, a stack pointer, and a unique identifier (process ID). Processes can
be considered a container that holds all information needed by an OS to run a program.

A process tree provides a visualization of processes. Processes are allowed to create new
processes. Child processes are created by a parent process. Ancestor processes
are generated before subsequent processes. Process trees change very frequently, as
processes are created and destroyed. File system trees on the other hand, are used in a
very different way, as they may exist for a prolonged period of time.

File systems are also implemented through a tree structure, as they include subdi-
rectories and files. On most Unix filesystems, other filesystems are mounted onto an
existing filesystems at an arbitrary location (subdirectory). Before mounting, we have
the present tree structure. After mounting, the OS mounts the guest filesystem in the
original filesystem as a subdirectory. The location where this is mounted can be changed,
but this is usually on mnt.

On Unix systems, two processes can communicate with each other via a pipe. Pipes
are accessed using file I/O API. UNIX-like OS make use of files and associated API for
different operations and services:

• Pipes allow for interprocess communication.

• Sockets allow for networking.

• Devices (/dev) allows for applications to obtain information quickly from devices.
This includes block devices (disks) and character devices (terminals).

• Random number generator (/dev/random) acts as a source for random numbers.

• Exporting kernel parameters (/proc and /sys) can be achieved through pseudo-
filesystems containing virtual files. For example, information about processes,
memory usage, and information on hardware devices.

13



David Ng (July 4, 2017) Principles of Operating Systems

Example 3.4

For file management, there are system calls for opening and writing to a file, closing
a file, reading data from a file into a buffer, writing data from a buffer into a file,
moving the file pointer, and obtaining status information on a file. For directory
and file system management, there are system calls to create directories, remove
empty directories, create new entries, remove directory entries, mount a file system,
and unmount a file system. Other signals allow one to change the working directory,
change the protection bits of a file, send a signal to a process, and obtain the time.
System calls may differ between operating systems, and require different keywords
to access.

§3.5 Advantages of Processes

Early systems ran a single program at a time with full control. Over time, CPU speed
increased and memory increased. The CPU was often left idle (such as during I/O). It
became more advantageous to load and execute multiple programs at the same time. To
do this, we needed firmer control and more compartmentalization of the various programs,
along with a bit of extra hardware for memory protection. The result was the notion of
a process, which is a program in execution. Processes allow for multitasking. Instead
of idly waiting while performing input and output, multitasking became possible when
memory was big enough to hold multiple programs. Processes also provide for the illusion
of parallelism. Even with a single CPU, program i could run for a few thousandths of
a second, then switch to program i + 1. This alternating program execution would then
be repeated.

A program is a passive entity, as it is an executable file containing a list of instructions,
and is stored on the disk. A process is an active entity with a program counter and other
resources. A program becomes a process when it is loaded into memory for execution. A
program can have more than one process.

§3.6 Implementation of Processes

Each process has its own address space. The OS makes part of physical memory
available to a process. Its virtual address space goes from 0 to max, and is isolated from
other processes. Going from 0 to max, we encounter the text section containing the
program code, the data section containing the global variables and constant variables,
the heap containing memory for dynamic allocation during runtime, followed by the
stack containing temporary data such as parameters, the return address, and local
variables. The program counter (PC) points to the current activity (next instruction),
while the contents of CPU registers are accessible to processes.

Each process is represented in the OS by a process control block (PCB). The
process table is a collection of all PCB. A typical PCB includes:

• Process state.

• Program counter.

• CPU registers.

• CPU-scheduling information priority, pointers to the queue, and other parameters.

• Memory management information such as page tables, segment tables, etc.
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• Accounting information such as CPU time, timeout values, process numbers, etc.

• I/O status information such as open files, I/O devices, etc.

Some fields of a PCB are those for process management, memory management, and
file management:

Process Management Memory Management File Management

Registers Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment File descriptors
Stack Pointer User ID
Process State Group ID
Priority
Scheduling parameters
Process ID
Parent process
Process group
Signals
Time when process started
CPU time used
Children’s CPU time
Time of next alarm

§3.7 Operations on Processes

Processes are created and deleted dynamically, so the OS must provide mechanisms for
this.

1. Process Creation (fork()): The parent process is the creating process, while
the child process is the newly created process. The processes in the system form a
tree. Each process gets pid, which is a unique process identifier for each process.

2. Process Execution (fork())

3. Process Termination (exit()): This allows the OS to delete the process. Ter-
mination can only be issued by the process or its parent.

4. Other operations: this includes operations such as synchronization and communica-
tion.

In Unix, the parent process and child process continue to be associated, forming a
process hierarchy. In Windows, all processes are equal, since the parent process can give
the control of its children to any other process.

Example 3.5 (init)

init is the first process started during the booting of a computer. Older UNIX
systems used System V or BSD init systems. Many (most) Linux systems have now
switched to systemd. init is the ancestor of all user processes, and has pid = 1.
System processes (such as swapper and pagedaemon) are created during bootstrap,
but are not descendants of init, since kthreadd is usually the parent of system
processes. Orphaned processes are adopted by init. To print a process tree, we use
the command pstree, ps axjf.
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§4 May 25, 2017

§4.1 Multiprogramming

Multiprogramming can be thought of as each program having a separate program counter
and executing concurrently. This is not the case (they are virtual program counters). In
reality, we switch execution of each process so that it appears that they are being run at
the same time. However, only one process is being executed at a time. CPU utilization
is given by

1− pn,

where p is the fraction of the process’ time spent on I/O and n is the degree of multipro-
gramming.

Example 4.1

Suppose that a computer has 8 GB of RAM. 2 GB are taken up by the OS, so there
remains 6 GB for user programs. The user wants to run a process that requires 2 GB
of RAM, with an average of 80% I/O. With 6 GB remaining, the user could potentially
run three copies of the same program. Thus, CPU utilization is 1 − 0.83 ≈ 49%.
Consider that the user obtains 8 GB more of RAM. With 14 GB remaining, the user
could run 7 copies of the same program. CPU utilization s therefore 1− 0.87 ≈ 79%.
Throughput has increased by around 30%. With an additional 8 GB, CPU utilization
becomes around 91%, where throughput has increased by only around 12% this time.
We notice diminishing returns.

§4.2 Process Creation

In a low level view, the init process is created at boot time. Only existing processes can
create new processes (fork). All processes are descendants of init. In Unix, fork() is
followed by exec∗() to spawn a different program. In Windows, this is accomplished by
CreateProcess().

In the higher level view, a process can create new processes for a variety of reasons:

• System initialization (boot). The init process will spawn many background processes
called daemons (on Unix), and services (on Windows).

• The application decides to spawn additional processes. For example, to execute
external programs or to do parallel work.

• When a user requests to create a new process. For example, launching an application
from the desktop.

• Starting a batch job, such as in mainframes.

In a low level view, all of the higher level processes use fork to create new processes.
Each process has its own address space, which is created during process creation. When
fork is called, the address space is duplicated (almost identical). The next instruction is
the same, but code flow may differ. By using fork, we create a child process from the
parent process. There are several options for allocating resources for a new process:

• The child obtains resources directly from the OS. This is the most common scheme,
as it is easy to implement.
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• The child obtains a portion of the resources allocated to the parent. The parent
gives the child a subset of its resources.

• The child shares some or all resources with the parent.

• Hybrid models that make use of combinations of the above schemes.

§4.3 Process Execution

We need to consider whether a process should be allowed to exhaust the resources of the
entire OS. When the child process is created, the parent process usually does one of three
things. The parent can wait until the child process is finished (often used when the child
does exec(), or simply system()), the parent can continue to execute concurrently and
independently of the child process, or the parent can continue to execute concurrently,
but occasionally synchronizes with the child. This last option can be quite complicated.

§4.4 Process Termination

A process may terminate when it is finished, through exceptions or errors, when it is
terminated by the parent, when it is killed by users, or when the computer is shut down.
When terminating a process, memory is freed, child processes are assigned a new parent,
and the PCB is deleted. All allocated resources are freed, and the processes are removed
from the process table. Typical conditions that terminate a process are:

• Normal exit: This action is voluntary. For example, an application decides it is
done, or the user decides to exit. The application calls exit() or ExitProcess().

• Error exit: This action is voluntary. For example, an application detects an error
and optionally notifies the user. The application calls exit() or ExitProcess().

• Fatal error: This action is involuntary, and is usually due to a program bug. For
example, accessing invalid memory or division by zero.

• Killed by another process: This action is involuntary. The parent or another
process calls kill() or TerminateProcess(). For example, during shutdown or
pressing ctrl-c in terminal.

The parent may terminate its children for different reasons. For example, the child has
exceeded its usage of some of the resources, the task assigned to the child is no longer
required, or the parent needs/wants to exit and wants to clean up. In Unix, to maintain
the process hierarchy, a process may be terminated or assigned to the grandparent process
or the init process as a child if its parent process is terminated. The default behavior on
Linux is to re-parent the child process to the init process. This can be changed to kill
the children or to re-parent to another process. See prctl().

§4.5 Process Scheduling

The objective is maximize CPU utilization by having a process executing on CPU at all
times. The process scheduler is a kernel routine/algorithm that selects an available
process to execute on the CPU. Scheduling is accomplished by maintaining scheduling
queues:

• job queue: This contains all processes in the system. This can be an array or
process table.
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• ready queue: This contains the processes in memory that are ready to be executed.
This can be a linked list, implemented via a pointer in PCB.

• device queues: This contains processes waiting for a particular I/O device. Each
device has its own queue.

Example 4.2 (Scheduling)

A process goes into the ready queue, enters the CPU, then ultimately leaves the
CPU. The CPU may also send the process back to the ready queue through an I/O
request (where the process enters an I/O queue before being handled by I/O), when
a certain time splice has expired, when forking a child (so the child can execute), or
when waiting for an interrupt (so the interrupt occurs).

We can also visualize process scheduling through states. There are three process states:

1. Running means that the process is actually running on the CPU.

2. Blocked means that the process is waiting for some event to occur, such as I/O.

3. Ready means that the process is ready to be executed by the CPU.

Only four transitions between states are allows. They are from ready to running
(scheduler dispatch), running to ready (timeout or yield), running to blocked (blocking
request), and blocked to ready (unblocking).

§4.6 Context Switching

Context switching is an essential feature of any multitasking OS, since it allows for
switching of the CPU from one process to another. The context or state includes the
CPU state (the contents of the CPU’s registers and the program counter) and the pointer
to the running process’ PCB. Context switching occurs in kernel mode, and may be
initiated when the current process voluntarily relinquishes CPU (known as yielding),
due to a timer interrupt used to signal the OS that the current process has exceeded its
allocated time slice (needed for the illusion of concurrency), or due to other hardware
interrupts (from the keyboard, mouse, or network).

When the OS switches between processes, the OS saves the state of the old process in
PCB and loads the saved state for the next process from PCB. Context switch introduces
a time overhead, since the CPU spends cycles on no useful work. Context switching
is often one of the most optimized parts of kernels. It can be improved by hardware
support, such as by saving/restoring registers in a single instruction or having multiple
sets of registers. Software based context switching is slower, but more customizable and
more efficient.

§4.7 Threads and Processes

A thread is a process within a process. Multiple threads in a process share the resources
of the process. Threads are used to improve performance. Processes are expensive to
create, terminate, and switch, while threads are cheap. Threads are not strictly needed,
but other alternatives are complicated. Processes are typically independent, while threads
exist as subsets of a process. Threads belonging to the same process share many resources
with each other, such as the address space and open files. On the other hand, processes
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interact only through OS mechanisms such as interprocess communication (IPC).
Threads have more options available for communication. While processes have more
capabilities, they are usually less efficient than threads.

We can think of a process as a way to group related resources together. It has an
address space containing program text and data, as well as other resources, including
open files, child processes, pending alarms, signal handlers, accounting information, etc.
A process has a thread of execution, where a thread has a program counter, registers,
and a stack. By default, a process has a single thread. Processes are used when the tasks
are unrelated.

Threads in a process allow multiple executions to take place in the same process
environment. A thread is a unit of execution of a process (mini processes within a
process). Threads are scheduled independently and can make system calls simultaneously.
While a thread requires an address space and other resources, it can share many of those
resources with other threads. Threads are used when tasks are actually part of the same
job and are actively and closely cooperating with each other.

Example 4.3

In a single-threaded process, a single thread has access to the code, data, and files.
It is associated with registers and a stack. In a multithreaded process, each thread
retains access to the code, data, and files. However, each are associated with their
own registers and stack.

Threads allow for multiple activities within an application, and are useful for parallel
computing on multiple CPU. For example, a browser downloading Ubuntu in one tab,
while playing a movie in another. Threads essentially allow multitasking within an
application. They are especially useful if the application needs to do substantial I/O
while also performing CPU operations. It allows us to create interactive GUI applications
through a dedicated UI thread. Threads are lighter weight than processes, easy to create
and destroy, and consume less memory to copy and manipulate. Thread creation is
usually tens to hundreds of times faster than process creation.

Processes

Group resources.
Each process has its own address space and PCB.
Address spaces are protected from each other.
Switching between processes is done at the kernel level.

Threads

Entities scheduled for execution on a CPU
Threads belonging to the same process share the process’ address space, code data, and files.
Registers and stacks are not shared.
There are no address space protections.
Switching between threads can be done at either the user or kernel level.

Per process items include the address space, global variables, open files, child processes,
pending alarms, signals and signal handlers, and accounting information. Per thread
items include the program counter, registers, stack, and state. For instance, if one thread
opens a file, that file is visible to the other threads in the process. They can all read
and write it to it. If one thread changes a global variable, it will be changed in all other
threads. If one thread calls exit(), all threads will be killed.
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Example 4.4 (Word Processor)

You are editing a document with 1000 pages. On page 1, you delete a paragraph,
then decide to jump to page 900. The application will be busy reformatting the
entire document from the first page so that the content on page 900 can be displayed
correctly. Different threads are used in word processors for interacting with the user,
formatting, spell checking, and auto-saving.

Example 4.5 (Web Server)

Requests for pages come in and the requested page is sent back to the client. The
tasks, such as receiving requests from the network interface, fetching the requested
page from the disk, and sending the page to the network interface, are all I/O bound.
We need to serve as many requests per second as possible. Different threads are used
for receiving the requests, sending the pages, fetching the page from the disk, etc.

Some common thread scenarios are described below:

1. Manager/Worker: One manager thread assigns work to worker threads. The
manager thread handles I/O. Worker threads can be static or dynamic. This is
sometimes called a master/slave scenario.

2. Pipeline: A task is broken into a series of operations, where each operation handled
by a different thread.

3. Peer: All threads work on the same or different tasks in parallel.

There are many benefits to threading. Some of these benefits are described below:

• Responsiveness: Multithreading an interactive application may allow a program
to continue running even if part of it is blocked or is performing a lengthy operation.

• Resource sharing: Threads share the memory and the resources of a process to
which they belong to by default. This implies that multiple threads reside in the
same address space.

• Economy: It is more economical to create and to context switch between threads.

• Scalability: More tasks can be scheduled on a system.

• Ease of Use: Aternatives are often much more complicated. For instance, compli-
cated finite state machines and non-blocking I/O and events.

Thread libraries provide the programmer with an API for creating and managing
threads. These are higher level wrappers around low level system calls. Some examples
include POSIX threads, Win32 threads, and Java threads. To use POSIX threads
(pthreads), we use #include <pthread.h> and compile with -lpthread:

• pthread create(thread, attr, start routine, arg) starts a thread, and is
similar to fork().

• pthread exit(status) terminates the current thread, and is similar to exit().

• pthread join(thread, status) blocks the calling thread until the specified thread
terminates, and is similar to wait().
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• pthread attr init(attr).

• pthread attr destroy(attr) initializes/destroys thread attributes.

§4.8 Thread Implementation

1. User-Level Threads are entirely implemented in user space, usually as a library.
The kernel knows nothing about the threads. Thread implementation is entirely
in user space, and requires no support from the OS. Thus, it can be used on OS
that do not support threads. Each process has its own thread table and scheduler.
Threads switch on system calls for I/O. There is no need to trap into the kernel
when switching threads, so they are very efficient. They make use of simple/custom
management and scheduling. It requires OS to support non-blocking I/O. However,
for processes with many threads, each additional thread makes other threads run
slower. There may also be paging issues.

The process table resides in kernel space, while the thread table, run-time system,
process, and thread reside in user space. User level threads require no OS support,
have fast context switching, do not require traps, and use customized scheduling.
However, it needs non-blocking system calls, a thread may run forever, page faults
exist, it is inefficient for threads with many blocking procedure/system calls, and
all threads get one time slice. User-level threads cannot easily be run on multiple
cores.

2. Kernel-Level Threads are managed by the kernel/OS. There is one master
thread table at the kernel level. Thread creation and deletion are done in the
kernel space. This is better for processes doing lot of blocking I/O. Processes with
multiple threads run faster, since each thread obtains the same amount of CPU
time. However, it is less efficient, since thread operations need to trap into the
kernel. There is increased kernel complexity.

The process table and thread table reside in kernel space, while the process and
thread reside in user space. Kernel level threads do not experience a problem with
blocking calls, and has a global view of all threads and processes, leading to efficient
global scheduling. However, they have issues with fork(), and require sending
signals to threads.

3. Hybrid threads combine the advantages of user-level threads with kernel-level
threads. The idea is to multiplex user-level threads into some or all of the kernel
threads. The kernel is aware of only the kernel-level threads and schedules those,
while the user-level threads are managed in the user space. It is up to the application
to decide how many kernel-level and user-level threads to create. The result is more
flexibility

Multiple user threads exist on a kernel thread. The kernel threads link from the
kernel space to the user space. This is often considered a many-to-many model.
Each kernel-level thread has some set of user-level threads that take turns using it.

Scheduler activations is a threading mechanism to allow closer integration between
user threads and the kernel. For instance, the kernel does processor allocation, while the
thread library does scheduling. This allows for hybrid kernel-level and user-level threads.
Scheduler activations is supported by some kernels. The kernel will notify the application
of events. For example, when a thread has been blocked, it could deal with page faults.
This notification is called an upcall. The application reacts by rescheduling its threads.
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§4.9 Thread Models

• Many-to-One (N:1) or user-level threads map many user-level threads to one
kernel thread. Thread management is done by the thread library in the user space.
Examples include Solaris Green Threads, and GNU Portable Threads.

• One-to-One (1:1) or kernel-level threads map each user thread to a kernel thread.
Examples include Windows NT/XP/2000, Linux, and Solaris 9.

• Many-to-Many (M:N) or hybrid user/kernel level threads multiplex many user-
level threads to a smaller or equal number of kernel threads. For example, Marcel,
the multithreading library for HPC.

§5 May 30, 2017

§5.1 Threading Issues

We should not call fork() in a program with multiple threads. We should only do this if
fork() is followed by execve) (or just call system()). In reality, only the calling thread
survives, and the other threads are not copied over. The application can be left in an
invalid state. This creates a problem if synchronization mechanisms were used. It is
possible to register a callback in case fork() is called by using pthread atfork().

Thread cancellation may occur when we wish to cancel threads:

1. Asynchronous cancellation can be issued with pthread kill(threadid, SIGUSR1).
One thread immediately terminates the target thread. The problem with this ap-
proach is that the data currently updated by the thread is terminated. The killed
thread has no chance to clean up, and may leave data in an undefined state.

2. Deferred (synchronous) cancellation asks the target thread to periodically
check whether it should terminate. This is set via a boolean flag. It only checks at
cancellation points at which it can be safely cancelled. The problem with this
approach is that we hinder performance, and the thread may run for a while after
a cancellation request is sent (and maybe report results). It is more flexible, but
also more complex to implement.

Example 5.1

Suppose we are searching through a database with multiple threads searching different
parts of the database. When one thread finds the result, we need a way to tell the
other threads to stop searching.

§5.2 UNIX Signals

Signals are a form of inter-process communication. They provide limited IPC since
only a small set of predefined integers can be used. Signals are asynchronous, similar
to interrupts. A signal is used to notify a process/thread that a particular event has
occurred. One process/thread sends a signal, while another process/thread receives it.
Note that it is possible for a process/thread to signal itself. The signal lifetime starts
when a signal is generated/sent, usually as a consequence of some event. The signal
is then delivered to a process/thread. This delivered signal must then be handled by
the process/thread via a signal handler.
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Example 5.2

Pressing <ctrl-c> in a terminal will deliver the SIGKILL signal to the running
process.

§5.3 Signal Generation

We can generate a signal manually from a program using kill(pid, signal) where pid

can be the current process. This can also be achieved periodically using a timer alarm()
or setitimer(). A signal can also be generated automatically to handle exceptions. An
example is a segmentation fault that automatically generates SIGSEGV.

Example 5.3

From the command line, kill 1234 tries to kill a specific process with the signal
SIGTERM, which can be intercepted. kill -9 1234 kills a specific process with the
signal 9, which is SIGKILL. kill -9 -1 kills all processes except init. Running
this as root will kill all processes and shut down the computer.

§5.4 Signal Handling

Signal handling is performed by the signal handler, which is a function that will be
invoked when a signal is delivered.

• Default signal handler: All programs have default handlers installed.

• User-defined signal handler: Programs can override the default handlers.

Some signals such as SIGKILL cannot be caught, as it will always terminate the process.
Signal handling is more complicated with threads, since we need to consider which threads
need to handle the signal, and what to do about user-level threads. In Linux, signal
delivery depends on the type of the signal:

• They may be delivered to the thread that caused the signal, such as when there is
invalid memory access (SIGSEGV).

• They may be delivered to every thread in the process, such as <ctrl-c> (SIGKILL).

• They may be delivered to certain threads in the process, such as with pthread kill(thread id,

signal).

• They may be assigned to a specific thread (usually the manager thread in the
master-slave model) to receive all signals for the process.

There are many possible issues with signals. Signals can be delivered anytime, even
when one is in the middle of a function, or in the middle of applying an operator. The
state of the data might be in an inconsistent state. Additionally, the signal handler could
itself be interrupted by another signal. To write a handler, one should keep it simple,
only modify global variables (such as a flag to signal that an interrupt has occurred, and
let the program handle the interrupt). One should thus declare global variables with
a volatile keyword, and only call reentrant functions in the handler. In general, we
should avoid signals as an IPC mechanism, especially in multi-threaded programs. Only
use signals if necessary, such as in background processes.
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Reentrant functions are functions that can be interrupted in the middle of an
operation, and then called again (re-entered) and finally the original function call can
finish executing. This is used in interrupt handlers, signal handlers, and multi-threaded
applications. To write reentrant functions, we should avoid the use of global variables,
unless using atomic operations, and not call other reentrant functions, unless we can
temporarily disable interrupts.

Thread pools are a software design pattern. A program creates and maintains a
set/pool of worker threads, where the pool size can be tuned to the available computing
resources. When the program needs a thread, it takes one out of the pool, and when the
thread is done, the program returns the thread back to the pool. If the pool contains no
available thread, the program waits until one becomes free. This is known as thread
recycling. With thread pools, thread creation/destruction costs are reduced, and the
number of possible concurrent threads is limited. However, a problem occurs when a
program needs more threads than the size of the pool.

Example 5.4

Whenever a server receives a request, it creates a separate thread to service the
request. While creating a separate thread is superior to creating a separate process,
a multithreaded server like this still has potential problems. We may be concerned
with frequent thread creation and termination leading to performance problems. This
may potentially create a large number of concurrent threads and lead to a resource
problem. Thus, we use thread pools. Servicing a request with an existing thread is
usually faster than waiting to create a thread. Additionally, a thread pool limits the
number of threads that exist at any one point. This is particularly important on
systems that cannot support a large number of concurrent threads.

Thread pools are usually combined with a task queue. Instead of asking for a thread,
a task is inserted into a task queue. Available threads in the thread pool take tasks from
the task queue, and finish them. The task queue can be augmented to support multiple
priorities, but one should beware of possible dependencies.

§5.5 Race Conditions

A race condition is a behavior where the output is dependent on the sequence or timing
of other uncontrollable events, such as those from context switching or scheduling on
multiple CPU. It is often a result of multiple processes/threads operating on a shared
state/resource. For instance, they may be modifying shared memory, reading/writing to
files, modifying filesystems, or reading/writing to databases. Debugging race conditions
is difficult, as many test runs may produce the same output that is often correct, but on
occasion, the output will be different. We want to avoid race conditions.

To avoid race conditions, we need to find a way to prevent more than one process/thread
from accessing the shared resource at any given time. That is, we need a process to be
finished with a shared resource before another can access it. We need to identify critical
sections in the code, and enforce mutual exclusion. A critical section/critical region
is a part of the program that accesses the shared resource in a way that could lead to
races. If we can arrange tasks such that no two processes or threads will ever be in their
critical sections at the same time (by blocking access if another process attempts to enter
its critical region), we could avoid the race condition through mutual exclusion. Some
requirements to avoid race conditions are:

• No two processes may be simultaneously inside their critical regions.

24



David Ng (July 4, 2017) Principles of Operating Systems

• No assumptions may be made about speeds or the number of CPU.

• No process running outside its critical region may block other processes.

• No process should have to wait forever to enter its critical region.

Example 5.5 (Dining Philosophers Problem)

Five silent philosophers sit at a round table with bowls of spaghetti. Forks are placed
between each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a philosopher can only
eat spaghetti when they have both left and right forks. Each fork can be held by
only one philosopher and so a philosopher can use the fork only if it is not being used
by another philosopher. After an individual philosopher finishes eating, they need to
put down both forks so that the forks become available to others. A philosopher can
take the fork on their right or the one on their left as they become available, but
cannot start eating before getting both forks.

Eating is not limited by the remaining amounts of spaghetti or stomach space; an
infinite supply and an infinite demand are assumed.

The problem is how to design a discipline of behavior (a concurrent algorithm)
such that no philosopher will starve, so that each can forever continue to alternate
between eating and thinking, assuming that no philosopher can know when others
may want to eat or think.

Supposing that the philosophers are all synchronized. If they all grab the fork on the
left at the same time, they reach a deadlock. This occurs since each will have one fork
and need to wait for the others. Nobody gets to eat at all. A livelock occurs when the
philosophers indefinitely switch between thinking and attempting to eat. Nobody will
eat, so they still starve. When only one philosopher is eating, we obtain a non-optimal
use of resources, resulting in reduced parallelism. This is called an arbiter solution.
Alternatively, the philosophers can sleep for a random amount of time before attempting
to eat. This is a random timeout mechanism for preventing deadlocks that is likely
to work. However, there is still a small chance that no one eats, or some philosophers
eat less often than others. This introduces the fairness problem. We can implement a
resource hierarchy solution by establishing a partial order on resources. This works
well, but starvation is still possible, and it is not practical for large resources.

§5.6 Mutex

Mutex is a synchronization mechanism for ensuring exclusive access to a resource in
concurrent programs. It has the states locked and unlocked, with the two operations
lock() and unlock(). Only the process/thread that locks the mutex can unlock it. Thus,
a waiting queue is used to hold entities waiting on the mutex. This can be implemented in
software via busy waiting, and is usually supported by the hardware and OS. Libraries
often try to use hardware mutex, but can fall back to software. The following is a
description of mutexes in pthreads:

• pthread mutex init creates a mutex.

• pthread mutex destroy destroys an existing mutex.

• pthread mutex lock acquires a lock or block.
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• pthread mutex trylock acquires a lock or fails.

• pthread mutex unlock releases a lock.

§5.7 Summary

• Critical Section: The part of the program where a shared resource is accessed.

• Mutual Exclusion: Only one process can enter the critical section at any given
time.

• Mutex/Lock: A mechanism to achieve mutual exclusion, two states, queue.

• Deadlock: A state where each process/thread is waiting on another process/group
to release a lock. No progress is made.

• Livelock: States of the processes change, but none are progressing.

• Starvation: One process does not get to run at all.

• Fairness: A stronger requirement than starvation. All processes get equal oppor-
tunity to progress.

§6 June 1, 2017

§6.1 Producer-Consumer Problem

Two processes may share a fix-sized buffer that is used as a queue. The producer puts
data into the buffer, while the consumer takes data out of the buffer. The consumer
must wait if the buffer is empty, and the producer must wait if the buffer is full. A
circular buffer is a common way to implement a queue.

Example 6.1

In a simple implementation of the circular buffer, we may encounter a race condition
if we run the consumer and producer in different threads. Using a mutex, there is no
race condition, but it may only work for a single producer and consumer. In the case
that we wanted multiples of each, we encounter the problem of busy wait. Deadlocks
may occur.

§6.2 Condition Variables

A condition variable is another synchronization primitive that is useful for implementing
critical sections containing loops that wait for a condition. It can block one or more
threads, while the other thread does something to satisfy the condition. It is used in
conjunction with mutexes. This allows us to avoid deadlocks and busy waiting.

Condition variables are often used in a general pattern. For one thread, it locks the
mutex and waits on a condition variable if it is unable to get what it needs. This unlocks
the mutex, but puts the thread to sleep. Eventually, some other thread locks the mutex
(optional) and then changes to a state that will satisfy the condition. This notifies the
waiting thread, which then releases the mutex (optional). The waiting thread then wakes
up, and gets the mutex back. We use the following commands:
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• pthread mutex t mutex is the mutex, while pthread cond t cond is the condition
variable.

• pthread cond wait(&cond, &mutex) automatically releases the mutex and causes
the calling thread to block until some other thread calls pthread cond signal(&cond).
After returning, the condition must be rechecked (spurious wakeups). The mutex
is then automatically re-acquired.

• pthread cond signal(&cond) wakes up one thread waiting on the condition. If
no threads are waiting on the condition, the signal is lost. This must be followed
by pthread mutex unlock() if the blocked thread uses the same mutex.

• pthread cond init(&cond, &attr) creates a condition variable.

• pthread cond destroy(&cond) destroys a condition variable.

• pthread cond broadcast(&cond) wakes up all threads waiting on the condition.

Example 6.2

In the previous producer and consumer example, we encountered a deadlock because
one thread is stuck in an infinite loop while in its critical section. The other thread
has no chance to run its critical section to allow the other thread to exit the loop.
With condition variables, this can be resolved.

§6.3 Semaphore

A semaphore is another synchronization primitive. It is a special integer variable used
for signaling among processes. The value indicates the number of available units of some
resource. It supports three operations:

1. Initialization: It can be initialized with any value between 0 and max.

2. Increment: It can be incremented, and possibly unblock a process. One would use
up(S), signal(S) or sem post(S).

3. Decrement : It can be decremented, and possibly block a process. One would use
down(s), wait(S) or sem wait(S).

A binary semaphore is a special type of semaphore with the value being either 0 of 1.
We note that the bodies must be executed atomically. When the binary semaphore is
locked by a thread, it can be unlocked by any thread. As opposed to mutex, where a
locking/unlocking must be done by the same thread, each semaphore maintains a queue
of processes blocked on the semaphore.

Example 6.3

The critical section would fall between wait(s) and signal(s), where s is the
semaphore. Since the semaphore can only be incremented or decremented at the
beginning or end, the critical section can evaluate properly.

Comparing semaphores with condition variables, semaphores use up() (this always
increments the semaphore, and possibly wakes up the thread) instead of cv signal()
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(this is lost and has no effect if there is no thread waiting). Semaphores also use down()

(this checks the value of the semaphore, and may or may not block) instead of cv wait()

(this always blocks, and does not check the condition).
Counting semaphores, also known as general semaphores or just semaphores

represent an integer value s.

1. When s > 0, the value of s is the number of processes/threads that can issue a
wait and immediately continue to execute.

2. When s = 0, all resources are busy, so the calling process/thread must wait.

3. When s < 0, s represents the number of processes that are waiting to be unblocked.
Some implementations might do this.

We use the following commands to use semaphores:

• int sem init (sem t *sem, int pshared, unsigned int value) initializes a
semaphore to the given value.

• int sem destroy (sem t *sem) destroys the semaphore, and fails if some threads
are waiting on it.

• int sem wait (sem t *sem) suspends the calling thread until the semaphore is
non-zero. It then atomically decreases the semaphore count.

• int sem post (sem t *sem) atomically increases the semaphore, never blocks,
may unblock blocked threads, and is safe to use in signal handlers in Linux on 486+
hardware.

• int sem getvalue (sem t *sem, int *sval) returns the value of the semaphore
via sval.

• int sem trywait (sem t *sem) is a non blocking version of sem wait().

Example 6.4

When we initialize the semaphore with a value of 2, two threads will enter their
critical sections simultaneously. The other threads will be blocked until one of the
two threads leave their critical sections.

Semaphore can be implemented in a data structure that holds a value and a list of PCB.
A process can block() itself, and unblock by wakeup(). The list of PCB should be first
in, first out.

Example 6.5

When managing a pool of N = 10 resources, semaphore s is used to keep track of the
number of available resources. Initialization is called using init(s,N). Each process
may request K ≤ N resources at a time. This could potentially lead to a deadlock.
For instance, when the first thread needs 7 resources and the second thread needs 6
resources. Depending on scheduling, we may get a deadlock. This could be related
to the order of operations. Suppose that the first thread requests 6 resources. The
scheduler then switches to the second thread, which requests 4 resources, exhausting
all available resources. Both threads are stuck, resulting in a deadlock.
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Suppose we have a pool of N resources, say fixed size buffers. We may want to use a
counting semaphore initialized to N to keep track of the number of the buffers available.
When a process wants to allocate a buffer, it calls P on the semaphore and gets a buffer.
If there are no buffers available, a process waits until some other process releases a
buffer and invokes V on the semaphore. Consider that there are two processes that
respectively want to acquire K < N and L < N buffers, such that K + L > N . The
naive implementation would have the first process call the simple decrementing variant
P on the semaphore K times, and it would have the second process call the simple
decrementing variant P on the semaphore L times. In this case, it is preferable to use an
extended semaphore that can handle this situation.

Implementation of concurrent programs can be tricky, as one subtle error could result
in everything coming to a grinding halt. Concurrent programming can be even worse
than programming in assembly language. Any error with semaphores will potentially
result in race conditions, deadlocks, and other forms of unpredictable and irreproducible
behaviour. We could potentially violate mutual exclusivity if we swap the signal and
wait that surround the critical section when using a semaphore, or cause a deadlock of
we encapsulate the critical section with lock when using a mutex.

§6.4 Monitors

A monitor is a programming language construct that controls access to shared data.
It is synchronization code added by the compiler and enforced at runtime. It can be
implemented in Concurrent Pascal, C#, D, Modula-3, Java, Ruby, Python, etc. It can be
somewhat emulated in C++ with classes, and even to some extent in C using struct and
functions or function pointers. A monitor is a module that encapsulates shared data
structures, procedures that operate on the shared data structures, and synchronization
between concurrent procedure invocations. The data in monitors can only be accessed
via the published procedures. A properly implemented monitor is virtually impossible to
use in a wrong way, as a monitor is a higher-level construct compared to mutexes and
semaphores.

Monitors ensure mutual exclusion, as only one thread can execute any monitor procedure
at any time. All other threads would be blocked. Monitors have their own unique queues.

Example 6.6

Suppose a monitor construct contains the incr() and decr() functions. Calling
incr() or decr() from multiple threads would allow one thread in, as the rest would
be blocked. We can think of all bodies of all procedures being critical sections,
protected by one mutex. In C++, one can emulate this by making a private mutex
and locking it at the beginning of every method.

Monitors can have their own condition variables that are declared as a part of the
module. They are only accessible from within the module, and are quite similar to
pthread cond t. Once a monitor is correctly programmed, access to the protected
resource is correct, for accessing from all processes. With semaphores or mutexes, resource
access is correct only if all of the processes that access the resource are programmed
correctly. When programming with monitors, one simply needs to test and debug the
monitor, while programming with mutexes/semaphores, one needs to debug the code
using them.
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§6.5 Spinlocks

Spinlocks are another synchronization mechanism, with locks implemented using busy
waiting loops. They are essentially a lightweight alternative to mutex. They are often
implemented in assembly, using atomic operations, thus making them very efficient if
one knows the wait time will be very short. No re-scheduling required. Spinlocks are
used inside kernels, often in the same way as mutexes.

Definition 6.7. A atomic operation is an operation that executes instantaneously.
That is, it cannot be interrupted by anything else.

Example 6.8

The structure of a spinlock is very similar to that of a mutex. The difference is that
a spinlock has a very short critical section. Compare-and-swap (CAS) is an atomic
operation used for synchronization, and is supported by most CPUs today. The
general algorithm consists of first comparing the contents of memory to val1. If
they are the same, it changes the memory to val2. These two actions are atomic. It
then returns the old contents of memory.

gcc provides a number of atomic operations, including CAS. In the following, type
can be an 8, 16, 32 or 64 bit integer or pointer:

1. type sync val compare and swap (type *ptr, type oldval type newval) is
an atomic compare and swap. If the current value of *ptr is oldval, then write
newval into *ptr. Return the original *ptr.

2. bool sync bool compare and swap (type *ptr, type oldval type newval)

is the same as above, but returns true if newval was written.

Spinlocks can be implemented using compare-and-swap, or through pthreads:

• int pthread spin init(pthread spinlock t *lock, int pshared)

• int pthread spin destroy(pthread spinlock t *lock)

• int pthread spin lock(pthread spinlock t *lock)

• int pthread spin trylock(pthread spinlock t *lock)

• int pthread spin unlock(pthread spinlock t * lock)

§6.6 Additional Synchronization Mechanisms

Event flags are a memory word. Different event may be associated with each bit in a
flag. Some operations are set/clear flag, wait for 1 flag, wait for any flag, and wait for all
flags. Message passing occurs when processes send each other messages. Messages
can contain arbitrary data. Delivered messages can be queued in mailboxes. Processes
can check contents of mailboxes, take messages out, or wait for messages. A common
implementation is MPI (message passing interface), which is used in high performance
computing.

Suppose we have three processes, L, M , and H whose priorities from highest to lowest
are in alphabetic order. Assume that process H requires resource R, which is currently
being accessed by process L. While H is waiting for L to finish using resource R, M
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becomes runnable, thereby following process L. Now, H has to wait for both M and
L to finish. Effectively, H has the lowest priority in this execution. This problem is
known as priority inversion. To avoid this, we use priority inheritance. As soon
as H requests resource R, the process P holding resource R automatically inherits the
priority of H if P has lower priority. Once P releases the resource, its original priority is
restored. As a result, we would have the execution order of L followed by H, then M .

Example 6.9

Race conditions can occur with separate programs. A print server monitors a
directory for jobs to print. When it finds a PDF file, it prints it. If it does not find a
PDF file, it sleeps for one second. Other programs can submit jobs by writing files
to the directory. The problem is that the print server may print an incomplete file.
Some filesystems support file/directory locking mechanisms, but we will not rely on
those. We will assume the only atomic operations are file creation and file rename.

We modify the programs that print, so the print server needs no modification.
When a program needs to print, it creates a temporary file in the directory, called
randomly. For example, job-xxxxxx.tmp, where xxxxxx is a unique number. It
then writes the output to this temporary file, then closes the file. Now, it renames
job-xxxxxx.tmp to job-yyyyyy.pdf where yyyyyy is a unique number. We can
then create a random file name (there is a UNIX utility for this, called mkstemp()).
We can make our own program to rename to a random filename by looping the
generation of a random string, following by attempting to call rename and breaking
if successful.

Example 6.10 (Readers/Writers Problem)

A single resource is shared among several threads. Some threads only read the
resource, while others only write to it. The resource supports multiple concurrent
readers, but only a single writer. We can use semaphores to implement this effi-
ciently, using three variables. int readCount represents number of readers reading,
semaphore cs is used as a mutex to control access to the critical section, and
semaphore w only is used as a flag representing whether write is available.

§7 June 6, 2017

§7.1 Alternative Synchronization Mechanisms

We recall that a race-free solution satisfies the following four requirements:

1. Mutual Exclusion: No two processes/threads may be simultaneously inside their
critical sections (CS).

2. Progress: No process/threads running outside its CS may block other process-
es/threads.

3. Bounded Waiting: No process/thread should have to wait forever to enter its
CS.

4. Speed: No assumptions may be made about the speed or the number of CPU.
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We have already seen that mutex, semaphore, spinlock, monitor, and condition variables
permit mutual exclusion. We now consider several alternatives:

• Disabling interrupts: Each process disables all interrupts just before entering
its CS and re-enables them just before leaving the CS. Once a process has disabled
interrupts, it can examine and update the shared memory without interventions from
other processes. Problems occur when a process never re-enables the interrupts. On
multi-CPU systems, disabling interrupts affects only one CPU. Disabling interrupts
is mostly used inside kernels, but even that is becoming problematic.

• Lock variables: A single shared (lock) variable is initialized to 0. When lock ==

0, there is no process in its CS. When lock == 1, a process is in its CS. A process
can only enter its CS if lock == 0. Otherwise, it must wait. However, there is no
mutual exclusion since a first thread can pass the while loop, context switch to the
second thread that also passes the while loop (checking that lock == 1, and then
both set the lock. Both threads are in their CS. To overcome this, we need to make
entering the CS an atomic operation (such as using compare and swap).

• Strict alternation: Two processes alternate entering their critical sections. This
can be achieved using a global variable turn = 0. Thread 1 only enters when turn

!= 0 and sets turn = 1 when it leaves its critical section, while thread 2 does the
reverse. This achieves mutual exclusion. However, we have busy waiting due to the
while loop, this only works for two processes, and this does not satisfy the progress
property, since a process is blocked by another (slower) process not in its CS.

• Peterson’s algorithm: This is a software only solution for two processes. It may
fail on some CPU that use out-of-order execution or memory reordering. It makes
use of a shared integer turn that indicates whose turn it is, and a shared array
flag[2] that indicates who is interested in entering the CS. This is initialized to 0.
The while loop therefore checks that both the flag and turn are set appropriately
before the while loop is exited. Peterson’s algorithm achieves mutual exclusion,
progress, and bounded waiting.

• Synchronization hardware: Race conditions are prevented by ensuring that
critical sections are protected by locks. A process must acquire a lock before entering
its CS, and releases the lock when it exits the CS. Many modern computer systems
provide special hardware instructions that implement useful atomic operations that
can be used to create atomic locking and unlocking mechanisms:

– compare-and-swap is an atomic operation used for synchronization. It is
supported by most CPU today, such as CMPXCHG on Intel. It compares the
contents of memory to val1. If they are the same, it change the memory to
val2, then returns the old contents of memory.

– test-and-set is a specialized version of compare-and-swap. Old hardware
used test-and-set, while newer hardware uses the more generalized compare-
and-swap. First, it remember the contents of memory. Then, it sets memory
to true and returns the old contents of memory.

– swap is another atomic operation that can be used for synchronization. It
atomically swaps the contents of two memory locations. Thus, we combine
it with a boolean value initially set to true. While the condition is true, we
repeatedly swap with a lock variable that is set to exit the loop only when a
critical section is left.
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When used correctly, the atomic operations such as compare-and-swap, test-and-set,
and swap can be used to achieve mutual exclusion, progress and speed. However,
they are too low level to achieve bounded waiting, especially for N > 2 processes.
Bounded waiting can be added via two shared variables.

Synchronization hardware can be used to implement mutual exclusion, progress,
speed and even bounded waiting. It avoids system calls, and can be more efficient
if the expected wait time is short. However, we encounter busy-waiting (spinlocks)
and extra coding (especially for bounded waiting). It also only makes sense on
multicore systems.

§7.2 CPU Scheduling

Recall that in multiprogramming, our main objective is to maximize CPU utilization by
having a process running at all times. Several processes are kept in memory at one time,
and a process runs until it must wait. Instead of having the CPU sit idle, the OS takes
the CPU away from the waiting process and gives it to another process that is ready to
run. The software that decides which process runs next is called a scheduler, and is
usually a part of the kernel.

Most processes alternate bursts of CPU activity with bursts of I/O activity:

1. Compute-bound, or CPU-bound processes contain long CPU bursts and infre-
quent I/O waits.

2. I/O-bound processes contain short CPU burst and frequent I/O waits.

As CPU get faster, processes tend to get more I/O-bound. It takes quite a few I/O-bound
processes to keep the CPU fully occupied. Scheduling may be needed for process creation
(parent and child), process termination, blocking system calls (such as I/O or mutex), I/O
interrupts that may unblock a process (deciding whether the process is run immediately or
put into the ready queue), and periodic clock interrupts (used to implement a time-slice).

Scheduling algorithms may be non-preemptive, where a process runs until it does
I/O, exits, or voluntarily yields CPU. Context switching occurs voluntarily. Multitasking
is possible, but only through cooperation. Scheduling algorithms may also be preemp-
tive, where processes can be context switched without cooperation. This may be due to
an interrupt, but not necessarily a clock. for instance, a new job is added, so an existing
process is unblocked. Strictly speaking, there is no concept of time-slice. However, pre-
emptive is often misused to mean preemptive time-sharing. Preemptive time-sharing
is a special case of preemptive. Processes are context switched periodically, usually to
enforce a time-slice policy. It is implemented through clock interrupts. On systems
without a clock for clock interrupts, only cooperative multitasking (non-preemptive)
scheduling is possible.

Scheduling algorithms generally fall under the following three categories:

1. Batch: Usually on mainframes, processing payroll, bank interests, and insurance
claims. HPC systems also use batch algorithms, since no interactivity is needed, so
no preemption is needed.

2. Interactive: General systems running many tasks, many of them must remain
interactive.

3. Real Time: Applications are guaranteed CPU cycles per second. This is often
tied closely to some hardware, such as for robots, planes, cars, video/audio capture,
etc.
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§7.3 Scheduling Metrics

We make use of the following statistics to compare the efficiency and usefulness of different
scheduling algorithms:

• Arrival time is the time a process arrives (such as when you double-click the
Firefox icon).

• Start time is the time the process first gets to run on the CPU. It is different from
arrival for batch systems, and nearly identical to arrival on interactive systems.

• Finish time is when the process is done (time of the last instruction).

• Response time is how long before we get first feedback, and is often equal to
start time minus arrival time.

• Turnaround time is the time from arrival to finish, and is calculated as the finish
time minus the arrival time.

• CPU time is how much time the process spent on the CPU.

• Waiting time is the total time spent in the waiting queue, and is often calculated
as the turnaround time minus the CPU time and minus the I/O time.

• Average turnaround time is the average turnaround time for multiple processes.

• Average wait time is the average wait time for multiple processes.

• Throughput is the number of jobs finished per unit of time

§7.4 Scheduling on Batch Systems

Below are the main scheduling algorithms for batch systems. We can use Gantt charts to
visualize the scheduling of multiple processes.

1. First Come First Serve Scheduling (FCFS): This is one of the simplest
scheduling algorithms. It is non-preemptive, and the CPU is assigned in the order
the processes request it, using a FIFO ready queue. New jobs are appended to the
ready queue. A running job keeps the CPU until it is either finished, or it blocks.
When a running process blocks, the next process from the ready queue starts to
execute. When a process is unblocked, it is appended at the end of the ready queue.
In this algorithm, we use the minimum number of context switches, since there are
only N switches for N processes.

A big disadvantage is the convoy effect. Consider the scenario with one CPU-
bound process and many I/O-bound processes. The CPU-bound process will tie
up the CPU, making the I/O-bound processes wait a long time.

Example 7.1

CPU-bound process A has 1 second CPU burst cycles, while I/O bound
processes Bi need 1000 I/O operations, each 1/100 seconds long. With FCFS,
each process Bi will spend 1000 seconds executing in the presence of A. If
A did not exist, or if A could be preempted, each process Bi would finish in
around 10 seconds.
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2. Shortest Job First Scheduling (SJF): This is another non-preemptive schedul-
ing algorithm. It is applicable to batch systems, where job length (execution time)
is known in advance. When the CPU is available, it is assigned to the shortest
job. Ties are resolved using FCFS. SJF is similar to FCFS, but the ready queue
is sorted. Sorting may be basic, where execution time can be static, based on a
submitted estimate. Alternatively, sorting may be advanced, as the execution time
can be dynamically computed based on the history of CPU bursts.

SJF uses the minimum number of context switches (just like FCFS), and provides
optimal turnaround time if all jobs arrive simultaneously (by minimizing average
waiting time). However, this algorithm requires advance knowledge of how long
a job will execute, and it thus often limited to batch job systems. It also has a
potential for job starvation, as long programs will never get to run if short programs
are continuously added. This can be solved by aging by increasing a job priority
based on how long it has waited. Priority could be calculated as the total wait
time divided by the estimated run time. We can then sort the ready queue based
on priority.

3. Shortest Remaining Time Next Scheduling (SRTN): This is a preemptive
version of SJF. The next job is picked based on the remaining time, where remaining
time is equal to the total time minus the time already spent on the CPU. SRTN is
similar to RR. A ready queue is sorted by remaining time, where remaining time
can be static, or dynamically calculated. Context switches can happen as a result
of adding a new job.

SRTN has similar advantages to SJF, including optimal turnaround time even if
jobs do not arrive at the same time. However, it has slightly more context switches.
Like SJF, it requires advance knowledge of how long a job will execute, and has a
potential for job starvation. The cost of context switching must also be considered.

§8 June 8, 2017

§8.1 Operation Environments

We recall the following scheduling operation environments:

1. Batch Systems: No impatient users. Both nonpreemptive and preemptive algo-
rithms with long time periods for each process are often acceptable (for example,
corporate mainframe computing, payroll, inventory, accounting, and banking).
Scheduling algorithms for batch systems should consider throughput to maximize
jobs per hour (or per minute), turnaround time to minimize the time between
submission and termination, CPU utilization to keep the CPU busy all the times,
and waiting time to minimize turnaround time minus execution time.

2. Interactive Systems: Interact with users. Preemption is essential to keep one
process from hogging the CPU and denying service to the others (for example, chat
programs and servers). Scheduling algorithms for interactive systems should consider
response time to minimize the time between submission and the responses, and
proportionality to meet users? expectations.

3. Real Time Systems: Preemption is sometimes not needed because the processes
know that they may not run for a long period of time. They usually do their work
and block quickly (for example, gaming, video conferencing, and VoIP). Scheduling
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algorithms for real time systems should consider meeting deadlines to avoid losing
data, and predictability to avoid quality degradation in multimedia systems.

In all of these systems, a scheduling algorithm should additionally consider fairness by
giving each process a fair share of the CPU, policy/priority enforcement by ensuring
that the stated policy or priority is carried out, and balance by keeping all parts of the
system busy.

§8.2 Scheduling on Interactive Systems

Below are the main scheduling algorithms for interactive systems.

• Round Robin Scheduling (RR): This is a preemptive version of the FCFS
algorithm. Each process is assigned a time interval, called a time slice or quantum,
during which it is allowed to run (for instance, 10 msec). If the process exceeds the
quantum, the process is preempted (context switched), and the CPU is given to
the next process in the ready queue. The preempted process goes to the back of
the ready queue.

The performance of RR depends significantly on the size of the time quantum (Q)
and the time required for a context switch (S). A very small Q implies heavy
overhead, but a highly responsive system, while a very large Q implies minimum
overhead, but a non-responsive system. Although Q should be large compared to S,
it should not be too large. A rule of thumb is that 80% of the CPU bursts should
be shorter than the time quantum. A quantum of around 20 to 50 msec is often a
reasonable compromise.

Example 8.1

If S = 1ms and Q = 4ms, then the CPU will spend 1/(4 + 1) = 20% of its
time on useless tasks.

• Shortest Process Next Scheduling (SPN): This is very similar to SJF schedul-
ing. The ready queue is sorted by a predicted next CPU burst. It uses time-sharing
preemption. Prediction can be done using exponential averaging.

Example 8.2 (Estimating Burst via Exponential Averaging)

After every burst B, update the prediction P :

P = a ·B + (1− a) · P ′,

where P is the new prediction that is initialized to some value (even 0 would
work), P ′ is the previous prediction, and a is a smoothing factor, commonly
set to a 1/2.

• Fair Share Scheduling (FS): This is a scheduling algorithm that takes into
account the owners of the processes. It is used to ensure all users of a system get a
fair share of the CPU by allocating CPU among users/groups instead of processes.
This ensures that a user does not run much more processes than another user, and
use much more CPU than another user. Each user is allocated some fraction of the
CPU. In equal share, N users each get 100/N%. In unequal share, important
users get a big chunk of CPU time, but even more important users get an even
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bigger chunk of CPU time. All processes belonging to an owner have to share the
owner’s CPU share.

Example 8.3 (Equal Share)

User 1 has 50% CPU share, and the five processes A, B, C, D, and E. User 2
has 50% CPU share, and one process F. A possible scheduling sequence could
be A F B F C F D F E F A F B F C F D F E F A F B F C F D F E F ...

Example 8.4 (Unequal Share)

User 1 has 75% CPU share, and the five processes A, B, C, D, and E. User 2
has 25% CPU share, and one process F. A possible scheduling sequence could
be A B C F D E A F B C D F E A B F C D E F A B C F ...

• Multilevel Queue Scheduling (MQ): This is a preemptive time-sharing schedul-
ing algorithm. The ready queue is partitioned into separate queues. For instance,
there is a foreground queue for interactive processes such as browsers and games,
and a background queue for non-interactive process such as weather widgets and
web servers. A process is permanently assigned to one of the queues. Each queue
can have a different scheduling algorithm. For instance, the foreground queue uses
RR with a time slice of 10ms while the background queue uses RR with time slice
of 100ms. Scheduling is done based on queues:

1. Static priority scheduling occurs when each queue has a different, but
fixed priority. The scheduler processes jobs from the highest priority queue,
until it is empty. Once empty, it switches to the next highest priority queue.
Starvation is a problem.

Example 8.5

System processes are the highest priority. Priority then decreases as we
reach interactive processes, interactive editing processes, batch processes,
and eventually student processes.

2. Fixed CPU share for each queue occurs when background and foreground
processes obtain a fixed percentage of CPU. This is not a very dynamic
solution

Example 8.6

The background gets 20% of the CPU, while the foreground gets the
remaining 80%. Thus, processes in the background queue would share
20% of the CPU, while processes in the foreground queue share 80% of
the CPU.

• Multilevel Feedback Queue Scheduling (MFQ): This is a scheduling algo-
rithm similar to multilevel queues, since there are multiple queues, each representing
a different priority. Scheduling is also done based on queues, and each process
belongs to a queue. Now, a process can move between queues (this is a form of
aging). This now solves the starvation problem, as we can dynamically react to
a job changing from CPU-bound to IO-bound. CPU-bound processes move to
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low priority queues, while IO-bound move to high priority queues. The scheduler
is defined by the number of queues, the scheduling algorithms for each queue
(including different time slices), when to move a process between queues, and to
which queue a process is assigned when the process needs service.

Example 8.7

There are three queues, Q1, Q2 and Q3. All three queues are using RR
scheduling with time-slices of 8ms, 16ms and 32ms respectively. All jobs in Q1

are processed first, then Q2, then Q3. New jobs enters Q1. If a job in Q1 does
not finish in 8ms, it is demoted to Q2. If a job in Q2 does not finish in 16ms,
it is demoted to Q3. If a job in Q2 or Q3 waits for too long, it is promoted up
to Q1 (or Q2).

• Lottery Scheduling (L): This is a preemptive time-sharing algorithm where each
process gets some number of “lottery tickets”. The number of tickets is based
on process priority. Higher priority results in more tickets. The scheduler picks
a random number and the process with that ticket obtains a time-slice of CPU.
Higher priority processes have a higher chance of running. Over a long time, the
job’s priority will determine the job’s total CPU share. Cooperating processes may
exchange tickets, allowing dynamic fine-tuning of the priorities based on needs. For
instance, in a producer/consumer setting, the producers could swap tickets with
consumers. Starvation is not a problem, but there are some technical issues with
implementing efficient algorithm for large numbers of tickets and jobs.

In some of the above algorithms, we make use of the concept of priority, where some
processes have a higher priority than others. Priority Scheduling concerns a set of
scheduling algorithm that can schedule processes with different priorities. Important
processes should get more CPU time than less important processes. The higher the
priority of a process, the higher the CPU time. Priority could be determined by the status
of the owner. A background process (such as bittorrent) could have lower priority than an
interactive one (such as a game). Priorities can be static or dynamic.

Example 8.8

Static priority could be setting the bittorrent priority to 10, while the game priority
is set to 50. Dynamic priority could be giving I/O-bound processes higher priority
than CPU-bound processes.

Example 8.9 (Non-Preemptive Priority)

To implement priority scheduling with non-preemptive scheduling, a simple approach
to handle priorities could work. Consider SJF-like scheduling, where the ready queue
is sorted by priority. All jobs eventually finish, although a newly added job with
very high priority might have to wait.
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Example 8.10 (Preemptive Priority)

Accounting for priority with preemptive scheduling is more complicated. Consider
RR-like scheduling, where the ready queue is sorted by priority. The problem is
starvation, since a high priority CPU-bound process would ensure no other processes
get to run at all.

§8.3 Scheduling on Real Time Systems

Programs for real time systems are generally expressed as a set of event handlers or
tasks responding to events. For example, the handling of interrupts from a device or
timer. A task in a real time OS CPU (RTOS) must respond within a fixed amount of
time from the time of the event (deadline). Task types can be considered periodic if
they occur at regular intervals/periods, or aperiodic if they occur unpredictably with
deadlines for start and/or finish. Correctness depends both on the logical result, as well
as the response time. Tasks have deadlines:

• Hard deadline: It must meet its deadline. A miss will cause system failure, so it
needs Hard RTOS. An example would be missing an interrupt in a pacemaker
device.

• Soft deadline: The occasional miss is acceptable. It needs Soft RTOS. An
example would be a game lag, or diminishing level of detail.

• Firm deadline: This is between hard and soft. An infrequent miss is tolerable,
but the value of task completion is 0 after the deadline. For example, in automated
manufacturing, a few bad products are okay.

Below are the main scheduling algorithms for real time systems.

• Rate Monotonic Scheduling (RM): This is a simple algorithm that is well
suited for periodic tasks. A task has a static priority based on the inverse of the
period of the task. Thus, a shorter period results in a higher priority, and a longer
period results in a lower priority. It is usually preemptive, as an event associated
with a higher priority task will preempt lower priority tasks. This simple formula
can be used to determine whether a set of tasks is schedulable. This means that
a schedule exists where no deadlines are missed. A new task could be rejected if
the system would become unschedulable. This is a very common RTOS scheduler.

• Earliest Deadline First Scheduling (EDF): This is a scheduling algorithm
similar to RM scheduling. A task with a shorter deadline has a higher priority
(dynamic). For instance, the scheduler picks a task with the earliest deadline. It is
usually a preemptive scheduler, as an event for higher priority tasks will preempt
lower priority tasks. It features optimal dynamic priority scheduling. If a schedule
exists, EDF will find it. It works better for aperiodic tasks than RM, and can
achieve 100% CPU utilization. This simple formula can determine whether tasks
can be scheduled without missing deadlines.

§8.4 Thread Scheduling

User level and kernel level threads can similarly be scheduled.
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• User level threads can be scheduled when the kernel assigns a quantum to a process.
Threads within the process share the quantum. Each process has its own thread
scheduler. There is no clock to interrupt a thread that runs too long. There is very
fast context switching.

Example 8.11

The kernel picks a process to execute. This could be at a 50ms time slice, so
there are 5ms CPU bursts per thread. The runtime system then picks a thread
to run. Thus, for two processes A and B, each with three threads, a possible
order of execution could be A1, A2, A3, A1, A2, A3. It is not possible for A1,
B1, A2, B2, A3, B3.

• Kernel level threads can be scheduled when the kernel assigns quantum to threads.
A full context switch is required. A thread blocking on I/O will not suspend the
entire process. Modern schedulers will often pick the next thread from the same
process to reduce context switching costs.

Example 8.12

The kernel picks a thread to execute. This could be at a 50ms time slice, so
there are 5ms CPU bursts per thread. Thus, for two processes A and B, each
with three threads, a possible order of execution could be A1, A2, A3, A1, A2,
A3. It is also possible for A1, B1, A2, B2, A3, B3.

§8.5 Scheduling Algorithms

Many modern day operating systems make use of different algorithms, with different levels
of preemption. Amiga OS has preemption and uses prioritized round robin scheduling.
Solaris and macOS have preemption, and use multilevel feedback queues. The latest
Linux OS has preemption and uses a completely fair scheduler. Windows 95 had half
preemption, and used a preemptive scheduler for 32 bit processes, and a cooperative
scheduler for 16 bit processes.

We also have other schedulers:

• Long-term scheduling decides which programs to run and which ones to delay.
Typical goals are to achieve a good mix of CPU-bound and I/O-bound processes.
This is important on batch systems.

• Medium-term scheduling decides which programs to swap in and out when
running low on resources, or when a process is idle for too long.

• Short-term scheduling is also known as CPU scheduling, and is responsible
for allocating CPU to processes in memory. For instance, it is responsible for
managing ready/blocking/waiting states.

• I/O scheduling is responsible for ordering in the I/O queue to increase throughput.

§9 June 13, 2017

§9.1 Deadlocks

A set of processes is deadlocked if each process in the set is waiting for an event, and
that event can be caused only by another process in the set. An event could be a resource
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becoming available, mutex/semaphore/spinlock being unlocked, a message arriving, etc.
A system consists of n processes P1, P2, ..., Pn, and m resource types R1, R2, ..., Rm.

The resource types could be CPU, memory space, I/O devices, etc. Each resource type
Ri has Wi instances. For instance, we have 1 CPU, 5 disks, and 3 printers. Each process
utilizes a resource in the same manner. First, it requests a resource (may block), then it
uses a resource for a finite amount of time, then releases a resource (potentially unblock
related processes).

A deadlock can arise only if four conditions hold simultaneously:

1. Mutual Exclusion: The involved resources must not be shareable. There is a
maximum of one process per resource.

2. Hold and Wait: A process holding at least one resource is waiting to acquire
additional resources.

3. No Preemption A resource can be released only by the process holding it volun-
tary.

4. Circular Wait There is an ordering of processes {P0, P1, ..., Pn} such that P1 waits
for P2, P2 waits for P3, ..., and Pn waits for P0. Thus, there is a cycle.

Example 9.1 (Trivial Deadlock Example)

Deadlocks can occur via system calls, locking, etc. A simple deadlock example
consists of two mutexes, where both need to be locked in order to access the critical
section. Two threads that lock in the reverse order can set up a deadlock when both
lock one mutex, but not the other. All 4 necessary conditions are present.

§9.2 Resource Allocation Graph

A resource allocation graph consists of a set of vertices V and a set of edges E. V
is partitioned into two types, with P = {P1, P2, ..., Pn} being the set consisting of all
the processes in the system, and R = {R1, R2, ..., Rm} being the set consisting of all
resource types in the system. The request edge is a directed edge from Pi → Rj , while
the assignment edge is a directed edge from Rj → Pi.

Example 9.2

A process Pi could be represented by a circle with Pi written inside. Resource Rj

with three instances could be represented by a square with three dots inside. An
arrow from Pi to Rj would indicate that Pi is requesting an instance of Rj . An arrow
from one of the dots in Rj to Pi would indicate that Pi is holding an instance of Rj .

When there is no cycle in a resource allocation graph, this means that there is no
deadlock. However, we should be careful in our interpretation of these graphs, as a cycle
does not necessarily imply a deadlock. A cycle is one component that is necessary for a
deadlock to occur. If the graph has a cycle and there is only one instance per resource
type, then this guarantees a deadlock. If the graph has a cycle and there are multiple
instances per resource type, then there may be a deadlock. Operation order is important,
as the same processes with the same resource requests may lead to a deadlock in one
order, and not lead to a deadlock in another.
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To deal with deadlocks, we may choose to ignore the problem by pretending that the
deadlocks have never occurred in the system. This is the approach of many operating
systems, including UNIX. It is up to the applications to address their deadlock issues.
We may alternatively choose to ensure that the system will never enter a deadlock state
through deadlock prevention or deadlock avoidance. We may also choose to allow
the system to enter a deadlock state and then recover through deadlock detection or
recovery from deadlock.

§9.3 Deadlock Prevention

Prevention is achieved by attacking one of the four necessary conditions.

• Avoiding mutual exclusion condition: Mutual exclusion is not required for
sharable resources such as read only files. However, it is necessary for non-sharable
resources. Thus, it is not practical in most cases. Spooling can help for some
resources such as printers.

• Avoiding hold and wait condition: We must guarantee that whenever a process
requests a resource, it does not hold any other resources. The first option is that a
process must request all needed resources at the beginning. The second option is
that a process can request resources only when is has no resources. However, this
may lead to low resource utilization, and starvation is possible.

Example 9.3

To avoid the trivial deadlock example with two locks that must be locked, we
can avoid the hold and wait condition by locking both mutexes at the same
time. By acquiring all resources at the beginning, we have avoided the hold and
wait condition. Instead of using lock(), we can use lockn(), which atomically
locks multiple mutexes at once. Alternatively, we may choose to lock the first
mutex, then use unlockAndLock(), which unlocks all locked mutexes first,
then locks them all. This follows the principle of releasing resources before
acquiring more. The related general concept is called two-phase locking.

• Avoiding no preemption condition: If a process that is holding some resources
requests another resource that cannot be immediately allocated to it, then all
resources currently being held are released, and the process is suspended. Preempted
resources are added to the list of resources for which the process is waiting. The
process will be resumed when it can regain its old and new resources. This only
works with resources for which we can save and restore the state (such as CPU
registers). It is a complicated mechanism that may lead to possible starvation.
There is non-optimal use of resources.

• Avoiding circular wait condition: This is the most practical condition to avoid. For
instance, we could impose a total ordering of all resource types, and require that each
process requests resources in an increasing order of enumeration.

Example 9.4

In the trivial deadlock example, we could change it so that both the first and
second thread lock mutex1 before locking mutex2. By locking mutexes in the
same order in all threads, we can avoid a deadlock.
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Example 9.5 (Deadlock with Lock Ordering)

Two transactions execute concurrently. Transaction 1 transfers twenty five
dollars from account A to account B, while Transaction 2 transfers fifty dollars
from account B to account A. This could lead to a potential deadlock. We
avoid the circular wait condition by ordering resources.

§9.4 Deadlock Avoidance

Deadlock prevention schemes can lead to low resource utilization. On the other hand,
deadlock avoidance can increase resource utilization if some a priori information
is available. The simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need. A deadlock-avoidance
algorithm dynamically examines the resource-allocation state to ensure that there can
never be a circular-wait condition. Resource-allocation state is defined by the number
of available and allocated resources, and the maximum demands of the processes.

When a process requests an available resource, the system must decide if immediate
allocation leaves the system in a safe state. If the new state is safe, the request is
granted. Otherwise, request is denied and the process waits. The system is in a safe
state if there exists a sequence < P1, P2, ..., Pn > of all running processes in the system
where they can all finish. When the system is in a safe state, no deadlocks are possible.
If the system is in an unsafe state, then there is a possibility of a deadlock. Avoidance
ensures that a system will never enter an unsafe state, regardless of whether a deadlock
is possible.

§9.5 Deadlock Avoidance Algorithm

When there is a single instance per resource type, we use a resource-allocation graph
algorithm. The claim edge from Pi → Rj indicates that process Pi may request resource
Rj . This is represented by a dashed line. The claim edge converts to a request edge
when a process requests a resource. The request edge converts to an assignment edge
when the resource is allocated to the process. When a resource is released by a process,
the assignment edge reconverts to a claim edge. Resources must be claimed a priori in
the system. A cycle occurs when there is a directed route that leads to the same starting
position.

Example 9.6 (Resource Allocation Graph Algorithm)

Suppose that we have two processes P1 and P2, and two resources R1 and R2. P1

holds R1, and P2 requests R1. P1 may request R2, and P2 may request R2. Suppose
that a process requests a resource. The request can be granted only if allowing
the request does not violate safe state. That is, converting the request edge to
an assignment edge does not result in the formation of a cycle. This cycle can be
comprised of any type of arrow, so long as there is a directed path back to the
starting position.

When there are multiple instances per resource type, we use the banker’s algorithm
instead. This is a more general avoidance algorithm than the resource-allocation graph
algorithm. It works with multiple instances per resource type. For the algorithm to work,
each process must a priori claim its maximum use of resources. When a process requests
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a resource it may have to wait (even if the resource is available). When a process gets all
of its resources, it must return them in a finite amount of time.

§9.6 Banker’s Algorithm

Let n be the number of processes, and m be the number of resources types. Available
is a vector of length m, where Available[j] = k means there are k instances of resource
type Rj available. Max is an n ·m matrix, where Max[i, j] = k means that process
Pi may request at most k instances of resource type Rj . Max[i] is the ith row of
Max. Allocation is an n ·m matrix, where Allocation[i, j] = k means that process Pi

is currently allocated k instances of Rj . Need is an n ·m matrix where Need[i, j] = k
means that Pi may need k more instances of Rj to complete its task. Note that
Need[i, j] = Max[i, j]−Allocation[i, j].

Now, we need to find a sequence of process executions that would finish all running
processes. We list the processes on the vertical axis, and the resources on the horizontal
axis. The resources are repeated for each of the headings of Allocation, Max, and
Need. Available is the number of instances of each resource remaining after the initial
allocation. We determine that the state is safe when there is some possible sequence of
adding the available resources to a particular process so that it obtains the resources
that it needs. When it is finished, all of the resources given to the process are returned
and now available. This is repeated until all processes have finished.

Example 9.7 (Banker’s Algorithm)

Given the state of the system, we can additionally consider whether it is possible
to grant an additional request of resources for a particular process. To do so, we
change the available resources and add them to the particular process allocation. We
then calculate the needed resources again for each process. Then, we try to deduce
whether this new state is safe or not. We can grant the request when there is a
possible execution sequence.

§9.7 Deadlock Detection

Deadlock detection allows a system to enter a deadlock state. Later, we detect the
deadlock and recover. The detection algorithm may be for a single instance per resource
type, or multiple instances per resource type.

Deadlock detection with a single instance per resource type can be achieved by
maintaining a wait-for graph. The nodes are processes, with Pi → Pj if Pi is waiting for
Pj . This can be obtained by collapsing the resource-allocation graph. Detection involves
periodically invoking an algorithm that searches for a cycle in the graph. If there is a
cycle, there exists a deadlock.

Example 9.8

We can convert a resource-allocation graph to its corresponding wait-for graph by
removing the resources. The arrows and their directions are maintained. This
indicates the processes that are waiting on each other.

Deadlock detection with multiple instances per resource type is achieved differently.
We let n be the number of processes, m be the number of resource types, Available[]
be the vector of length m that indicates the number of available resources of each type,
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Allocation[][] be the n ·m matrix that indicates the current allocation of resources per
process, and Request[][] be the n · m matrix that indicates the current requests for
resources per process. We use a strategy analogous to the banker’s algorithm, as we try
to determine if there is a sequence in which running processes can finish executing.

Remark 9.9. The algorithm requires O(m ·n2) operations to detect whether the system
is in a deadlock state.

We list the processes on the vertical axis. The resource types are listed on the horizontal
axis, with each repeated under the headings of Allocation and Request. Available is the
number of instances of each resource remaining after the initial allocation. The goal is to
find a sequence that will result in the processes finishing.

Example 9.10 (Detection Algorithm)

We can additionally consider whether an additional resource request by a particular
process is possible. Consider the processes that can run and finish, with the system
reclaiming resources when these processes finish. If there remains a process with
insufficient resources to meet its request, then a deadlock exists. The deadlock
consists of those processes with insufficient resources to run.

Detection algorithms are expensive and cannot check on every resource request. Other
ideas for invoking detection involve checking every few minutes, or checking when the
CPU goes idle. The question of when and how often detection is used depends on how
often a deadlock is likely to occur, and how many processes are affected. We can use one
for each disjoint cycle. If we check too often, we spend too many CPU cycles on useless
work. But if we do not check often enough, there may be many cycles in the resource
graph and we would not be able to tell which of the many deadlocked processes caused
the deadlock.

§9.8 Deadlock Recovery

There are three main ways to recover from a deadlock:

1. Process Termination: We could abort all deadlocked processes. This is simple,
but often a bad choice. We could alternatively abort one process at a time until
the deadlock cycle is eliminated. This is a better choice, but we need to decide the
order in which we abort. This order could depend on the priority of the process,
the age of the process, how much longer till completion, the resources the process
has used, the resources the process needs to complete, how many processes will
need to be terminated, or whether the process is interactive or batch.

2. Process Rollback: This uses an idea similar to process termination, but programs
can cooperate. Programs can be written to periodically save the current state
(checkpoint). When restarted, the program detects a checkpoint and resumes com-
putation from the last checkpoint (rollback). Programs can checkpoint themselves
just before requesting resources. Thus, when a deadlock is detected, a program
can be terminated and re-scheduled to run later. For instance, it could be run
after the other affected deadlocked processes are finished. This scheme does not
work well with all resource types (such as printers). However, it is useful for long
computations and simulations.
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3. Resource Preemption: When a deadlock occurs, we first pick a victim process.
This victim process is suspended. We then save the state of the victim’s resources,
and give the victim’s resources to other deadlocked processes. When the other
processes release the resources, we restore their state. Then, the resources are
returned to the victim. The victim is then unsuspended. This uses a similar idea
to rollback, but instead of checkpointing the program, we checkpoint the resources
of the program. However, this only works with some resource types.

§10 June 15, 2017

§10.1 Address Space

Operating systems need to run multiple processes simultaneously. Each process needs
some amount of memory. There are several concerns related to memory management.
Firstly, the OS must give each process some portion of the available memory (address
space). However, it also needs to determine which part of memory and how much
memory to give each process. The OS must also protect the memory given to one process
from other processes, but there needs to be a method to accomplish this. If programmers
do not know where the program will be loaded, how do they write code? Working with
physical (direct) addresses is not a good solution.

Example 10.1

When working with physical addresses, we may need to load two programs into
physical memory in RAM. Doing so changes the memory address of each instruction.
However, program instructions such as JMP 28 tell the program to jump to a specific
location in memory. With two programs loaded, this may result in the program
jumping to another program. Protection is another problem that arises from working
with physical addresses.

A pair of base and limit registers define the allowed range of addresses available to
the CPU. The base register indicates the starting memory, and the limit register indicates
the size of memory. The base and limit registers can only be modified in kernel mode.
The CPU checks every memory access generated by a process. When the process tries to
access an invalid address, it traps to the OS. Base and limit registers are stored in the
PCB.

Example 10.2

To visualize this, we can consider the OS as starting at 0 in memory, up to some
bound. This bound is the base for a new process, until it reaches the limit. This is
then the base of a new process, which has another limit.

Address protection in hardware is accomplished by a series of comparisons when the
CPU tries to access an address. If the address is greater than or equal to the base, and
less than the base plus the limit, then it can access memory. Otherwise, it traps to the
operating system monitor, as there is an addressing error.

§10.2 Address Binding

When programs are written, the physical address space of the process is not known. A
possible solution would be to write programs in a way that allows them to be relocated.

46



David Ng (July 4, 2017) Principles of Operating Systems

When needed, we can bind the addresses to the actual memory location. The addresses
in a program are represented in different ways at different stages of a program’s life. To
accomplish this, source code addresses are usually symbolic (int main()), addresses in
compiled code can bind to relocatable addresses (main = "14 bytes from beginning

of this module"), and before execution, the loader will bind the relocatable addresses
to physical addresses (main = "14 bytes from beginning of this module" = 1014).
Each binding maps one address space to another.

Address binding of instruction and data to memory addresses can happen at three
different stages:

1. Compile Time: If the memory location is known a priori, absolute code can be
generated and stored. We must recompile the code if the starting location changes.

2. Load Time: The compiled code must be stored as relocatable code. Binding is
done before the program starts executing.

3. Execution Time: If the process can be moved during its execution, binding is
done at run-time dynamically. This needs hardware support for address maps, such
as from the memory management unit.

Example 10.3

The source program is sent to the compiler or assembler. The time spent here is
compile time. It is then sent to the object module. Along with other object modules,
this enters load time as it is sent to the linkage editor. This leads to the load module.
Along with a system library, this is fed to the loader. The result is combined with
a dynamically loaded system library as it leaves load time and enters execution
time (runtime). Runtime consists of in-memory binary memory images, where the
dynamically loaded system library was dynamically linked.

Execution time address binding and memory protection can be achieved by virtualizing
memory. Each process is given a logical address space (virtual address space). It
is a contiguous space, ranging from 0 to MAX. Addresses that are generated by the
CPU as a process executes are known as logical addresses in this space. If the logical
address does not fall into the logical address space range, this is a violation that leads to
a trap. Physical address is a real memory address. Logical addresses are mapped to
physical addresses before reaching memory. The physical address space of a process
is the subset of RAM allocated to a process, and is the set of all mappings from logical
addresses.

§10.3 Memory Management Unit

The Memory Management Unit (MMU) is a hardware device that maps virtual
addresses to physical addresses, and is often a part of the CPU. There are many possible
implementations. A CPU executing a process uses logical addresses, as it never sees
the real physical addresses. Execution-time binding occurs automatically whenever a
memory reference is made. The CPU sends logical addresses to the MMU, which then
sends physical addresses to memory.
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Example 10.4

A simple MMU implementation consists of a CPU with a relocation register. The
value in the relocation register (14000) is added to every address generated by a
process at the time it is sent to memory. Thus, when the CPU sends a logical address
(346) to the relocation register, it adds the value and then accesses memory at that
physical address (14346).

It is possible to combine the relocation register with the limit register. The relocation
(base) register is the smallest allowed physical memory address, while the limit register
is the size of the chunk of physical memory a process is allowed to use. This achieves
execution-time binding and memory protection.

Example 10.5

The CPU sends a logical address to the limit register. If it is less than the limit
register, it is permitted to proceed. Otherwise, there is a trap since there is an
addressing error. After passing the limit register, it reaches the relocation register
where a value is added. It then accesses the physical address in memory. For
instance, one program uses memory from 0 to 16380. The second program has a
base (relocation) register that starts at 16384. The limit register is set to 16384.

§10.4 Swapping

A process can be swapped temporarily out of memory to a backing store, and then
brought back into memory for continued execution. The backing store is a fast disk
large enough to accommodate copies of all memory images for all processes. Swapping
allows the OS to run more processes than the available physical memory.

Example 10.6

The operating system and user space operate with main memory. A process P1 may
be swapped out from the user space into the backing store. Another process P2 can
then be swapped in from the backing store into user space.

However, we need to consider whether the swapped out process needs to swap back
into the same physical addresses. This usually depends on the address binding method.
This is not a problem if MMU is used. We also must be careful with pending I/O,
especially when using memory-mapped device registers. I/O results could be sent to the
kernel, then to the process (double-buffering). Additionally, context switch times can be
extremely high.

Standard swapping is not used in modern operating systems, but modified versions of
swapping are used on many systems, such as Linux and Windows. On these systems,
swapping is disabled initially, and started if more than the threshold amount of memory
is allocated. It is then disabled once the memory demand reduces below the threshold.
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Example 10.7 (Swapping and Memory)

Memory allocation changes as processes are swapped in and out. For instance, we
consider the usage of memory over time. The operating system is always at the
bottom, taking up some amount of memory. Process A comes in and fills the next
available memory location. The same is true of processes B and C that arrive later.
Process A is now swapped out, while a process D with less memory requirement
fills in some of the space left by A. Process B is then swapped out, while Process A
swaps back in, taking some of its original space, and some left by process B.

§10.5 Memory Allocation

Memory allocation is concerned with the memory that the OS allocates to each process.
It is the case that most programs increase their memory usage during execution. A
possible solution is to swap processes out, find a bigger free memory chunk, then swap it
back in. A better solution is for the OS to allocate extra memory for each process.

Example 10.8

There is some memory that is actually in use, and some that is allocated room for
growth for each process. The actual program, data, and stack are in use, while the
remaining memory is room for growth.

At some point, the OS needs to find a free chunk of memory, mark it as used, and later
free it up. Simple approaches can lead to fragmentation with lots of tiny free chunks of
memory, none of which are big enough to satisfy any requests. The OS needs to manage
the memory in an efficient way that is both fast, and minimizes fragmentation. The two
general approaches are fixed partitioning and dynamic partitioning.

• Fixed Partitioning: Memory is divided into equal sized partitions. The problem
with this approach is that this can lead to internal fragmentation since memory
internal to a partition becomes fragmented. This leads to low memory utilization if
partitions are large.

Example 10.9

For instance, the total memory is 64MB, minus 8MB taken by the OS. The
partition size is 8MB. Thus, to load 3 processes P1 = 4MB,P2 = 8MB, and
P3 = 10MB, the first process takes up a part of the first partition, the second
process takes up the entire second partition, and the third process takes up
the third and part of the fourth partition.

In the above example, the actual free memory is 34MB, but the usable free memory
is 24MB since we cannot access the memory available in partition 1 and partition
4.

• Dynamic Partitioning: Partitions are created to fit a request perfectly. There is
no more internal fragmentation, but there is now external fragmentation since
the memory that is external to all partitions becomes increasingly fragmented. This
leads to low memory utilization.
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Example 10.10

With the same situation, we note that the OS, P1, P2, and P3 now take up
one partition that is exactly 8MB + 4MB + 8MB + 10MB in size. Thus, the
actual free memory of 34MB is exactly the same as the usable free memory of
34MB.

In the above example, we consider the case that P2 finishes when P4 = 18MB
arrives. We now have 24MB of free memory, where the actual free memory is equal
to the usable free memory. However, a fifth process P5 = 17MB could not start
since there is no contiguous block of memory that is 17MB.

Memory compaction occurs when the OS periodically rearranges the used blocks of
memory so that they are contiguous. Free blocks are merged into a single large block.
This is a CPU intensive operation. To accomplish this, we need a way to keep track of
free memory and allocated memory. Ideally, we would like to use a data structure that is
efficient at searching and reclaiming free space, and can deal with fragmentation:

• Bitmaps and Fixed Partitions: Memory is divided into equal partitions as
small as a few words and as large as several KB. The OS maintains a bitmap,
with one bit per partition, where 0 means the partition is free, while 1 means the
partition is occupied. Searching is an O(n) operation, where n is the size of the
bitmap. Smaller partitions lead to less fragmentation, but a larger bitmap. The
reverse is true of larger partitions.

Example 10.11

Process A takes up 5 partitions. This is followed by 3 empty partitions,
then process B which takes up 5 partitions. The bitmap would then be
1111100011111.

• Linked Lists: Memory is divided into segments of dynamic size. The OS maintains
a list of allocated and free memory segments (holes), sorted by address. Searching is
an O(n) operation, where n is the number of segments in the linked list. Reclaiming
free space can be an O(1) operation if a doubly-linked list is used and linked list
data is stored within segments. With linked lists, when a process X terminates, its
location in memory is cleared. There is no shifting of other processes once X has
terminated.

Example 10.12

The list segment would store P representing process or H representing hole.
The segment would also store where this starts, and its length, followed by a
pointer to the next segment. Instead of a pointer to the next segment when we
arrive at the last segment, we represent this with an X instead. Thus, with the
previous example, we would have (P, 0, 5) indicating the first process pointing
to (H, 5, 3) indicating the hole. This would then point to (P, 8, 5, X).

There are different algorithms for finding free space (holes) in a linked list:

• First Fit: Find the first hole that is big enough. Leftover space becomes a new
hole.
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• Best Fit: Find the smallest hole that is big enough,. Leftover space becomes a
new hole. This new hole is very likely useless because of its small size.

• Next Fit: This is the same as first fit, but we start searching at the location of
last placement.

• Worst Fit: Find the largest hole. Leftover space is likely to be usable.

• Quick Fit: Maintain separate lists for common request sizes. This leads to faster
search, but results in more complicated management.

§10.6 Virtual Memory

Virtual memory is a memory management technique that allows the OS to present a
process with a logical address space that appears contiguous. Physical address space can
be discontiguous, with some parts of logical address space mapped to a backing store.
This improves memory management and allows parts of programs to be “swapped” in
and out.

Example 10.13

A process’ virtual memory may have discontiguous parts of it mapped to a disk,
while the remaining parts are mapped to discontiguous parts of physical memory.
The remaining parts of physical memory are mapped to from another process.

Paging is the most common virtual memory implementation. The virtual address
space of the process’ virtual memory is divided into pages of fixed size blocks, usually
powers of 2 ranging from 512B to 16MB. Physical memory is divided into (page)
frames that are the same size as pages. The pages map to frames via a lookup table
called a page table that has logical to physical address mappings. This avoids external
fragmentation, since there are no holes. Furthermore, each process has its own page table
(ptr in PCB).

If a program tries to address a page that does not map to physical memory, the CPU
issues a trap called a page fault. The OS suspends the process, loads the page from the
disk, updates the page table, then resumes the process. If the OS only loads pages as a
result of a page fault, we call that demand paging.

Example 10.14

The CPU package consists of the CPU and the memory management unit. The CPU
sends the virtual addresses to the MMU within the CPU package. The MMU then
sends the physical addresses to the memory. This occurs as a bus takes this data
out of the CPU package and into memory or the disk controller.

In paging, the OS keeps track of all free frames. This means that we still need memory
management techniques. To run a program of size N pages, the OS needs to find N free
frames before loading the program. The page table translates the logical addresses to
physical addresses. A similar mechanism is needed for the backing store, since it is also
split into pages. Unfortunately, we still have internal fragmentation with paging.
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Example 10.15

Given that the virtual address space is 64B, the physical address space is 32KB,
and the page size is 4KB, we know that the frame size must be the same as the page
size, so it is also 4KB. The number of pages is the virtual address space divided by
the page size, so there are 16 page entries. The number of frames is equal to the
physical address space divided by the page size, so there are 8 frames.

Example 10.16

The page size is 2KB and a process needs 71KB to load. We note that we need
35 + 1 = 36 pages. Thus, the OS needs to find 36 free frames. However, these frames
do not need to be contiguous, since the OS can allocate 36 frames anywhere. We
observe that one frame will have 1KB of unused space (internal fragmentation).
There is no external fragmentation since there are no holes between frames.

§10.7 Paging Performance

Demand paging performance is commonly evaluated by the effective access time for
memory access. Let p be the probability of a page fault (page fault rate) where
0 ≤ p ≤ 1. When p = 0, this means that all pages are in memory, so there is no page
fault. When p = 1, this means that all pages are on disk, so all memory accesses are
page faults. Let ma be the memory access time, and pfst be the page fault service time,
which is the time it takes to service a page fault. Then, effective access time EAT is
given by

EAT = (1− p) ∗ma + p ∗ pfst.

Example 10.17

A non-realistic example would be to calculate EAT when the page fault probability
is 50%, ma = 1ms and pfst = 10ms. We would find that EAT = (1 − 0.5) ∗
1 + 0.5 ∗ 10 = 0.5 + 5 = 5.5ms. A realistic example would be to calculate EAT
when p = 1/1000, ma = 100ns and pfst = 10ms. We would find that EAT =
(1− 0.001) ∗ 100ns + 0.001 ∗ 10000000ns = 99.9ns + 10000ns ≈ 10099.9ns. We note
in the realistic example that the effective access time is almost 101 times slower than
the memory access time.

§10.8 Paging Hardware and Models

The CPU uses an address translation scheme. The address generated by the CPU
is divided into the page number p, which is used as an index into a page table that
contains the base address of the corresponding frame in physical memory, and the page
offset d, which is combined with the base address to define the physical memory address
that is sent to the memory unit. For a given logical address space of size 2m and page size
2n, the page number uses m− n amount of space, while the page offset uses n amount of
space.
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Example 10.18

A 16 bit logical address 1010101001100101b, and page size of 210 would be split so
that the page number is 101010b and the page offset is 1001100101b.

Example 10.19 (Paging Hardware)

The CPU generates p and d. p is sent to the paging table, where this is used as an
index to find the base address of the corresponding frame in physical memory. This
frame f is combined with d to obtain the physical address. This is then used to
access physical memory, since f provides the base address of the frame in physical
memory, and d then permits access to the physical memory address. This is between
f0000...0000 and f1111...111.

Example 10.20 (Paging Model of Logical and Physical Memory)

Logical memory is entirely split up into Pages 0 to 3. We have a page table that
maps 0 to 1, 1 to 4, 2 to 3, and 3 to 7. Thus, in physical memory, Page 0 is in Frame
1, Page 1 is in Frame 4, Page 2 is in Frame 3, and Page 3 is in Frame 7. Frames 0, 2,
5, and 6 are not used.

Suppose instead we have four 4 byte pages of logical memory that needs to be
mapped with 32 byte physical memory. The page table maps 0 to 5, 1 to 6, 2 to 1,
and 3 to 2. Thus, Page 0 is mapped to 5 ∗ 4 = 20, Page 1 is mapped to 6 ∗ 4 = 24,
Page 2 is mapped to 1 ∗ 4 = 4, and Page 3 is mapped to 2 ∗ 4 = 8. Note that each
page is 4 bytes, so each frame needs to be 4 bytes.

Example 10.21 (Free Frames)

Before allocation, we have a free-frame list that consists of 14, 13, 18, 20, and 15. A
new process has Page 0 to 3. We now consult a new-process page table that maps
0 to 14, 1 to 13, 2 to 18, and 3 to 20. After allocation, the free-frame list contains
only 15, as the pages are mapped accordingly.

§10.9 Page Tables

The page table is kept in main memory. The page-table base register (PTBR) points
to the page table, while the page-table length register (PTLR) indicates size of the
page table. In this scheme, every data or instruction access requires at least two memory
accesses, consisting of an instruction fetch and page table lookup. The two memory
access problem can be solved by the use of a special fast-lookup hardware cache called
associative memory or translation lookaside buffers (TLB). TLB are extremely
fast and extremely small (64 to 1000 entries). On a TLB miss, the value is loaded into
TLB for faster access next time.

Associative memory permits a parallel search on content. The TLB stores a subset
of the page table, and searches based on the page number, returning the corresponding
frame number. This search is done in parallel. If the TLB does not contain a certain
page number, then it must be obtained from the page table in memory.

53



David Ng (July 4, 2017) Principles of Operating Systems

Example 10.22 (Paging Hardware with TLB)

The process is generally the same as outlined in the example with Paging Hardware.
Now, p is checked against all entries in the TLB. If there is a hit, then we have found
f . Otherwise on a TLB miss, we consult the page table. The rest of the process is
the same.

Memory protection is implemented by associating a protection bit with each
frame to indicate whether read-only or read-write access is allowed. We can also add
more bits to indicate page execute-only, and so on. There is also a valid-invalid bit
attached to each entry in the page table. Valid indicates that the associated page is in
the process’ logical address space, and is thus a legal page. Invalid on the other hand,
indicates that the page is not in the process’ logical address space. We could alternatively
use the page-table length register (PTLR). Any violations will result in a trap to the
kernel.

Example 10.23 (Structure of Page Table Entry)

A page table entry usually consists of a caching disabled bit, a referenced bit (this
is set by hardware automatically on any access), a modified bit (also known as a
dirty bit, this is set by hardware automatically on write access), a protection bit
(this includes various bits such as read, write, and execute), and a present/absent
bit (also known as a valid/invalid bit, this indicates a page fault when invalid). This
is then followed by the page frame number.

§11 June 20, 2017

§11.1 Page Table Implementations

Sometimes, it can be useful for processes to share some memory with other processes.
This is implemented using shared pages. One could be running multiple instances of
the same program, or programs using a shared library. Only one copy of the executable
code needs to be in physical memory. This is implemented using shared read-only
pages (read-only bit in page table entry). Shared pages are also useful for interprocess
communication, which may be implemented using shared read-write pages.

Example 11.1

Consider three processes P1, P2, and P3. Each of them contain ed1, ed2, and ed3
in their first four pages. The last page of each of these programs contains data for
their specific process. Their page tables would show similar entries for the first three
pages. The last page would be mapped to different locations. Thus, the frame could
store data1 from P1 in 1, data3 in 2, ed1 (used in all programs) in 3, ed2 in 4, ed3 in
6, and data2 in 7.

Page tables can get very large using straight-forward methods. Consider a 32 bit
logical address space with a page size of 4KB = 212. The page table would have over one
million entries since 232/212 = 220. If each entry is 4 bytes, then the page table would
take 4MB of memory. For 64 bit systems, page tables can be in the petabyte range.
There are some solutions to solve these size issues:
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• Hierarchical Paging: This relies on the observation that most programs do not
use all virtual address spaces at the same time, as only small parts of page tables
are used at any given time. The goal is to increase page table (PT) utilization and
reduce PT size. To do this, we break up the logical address space into multiple
page tables. A simple technique to accomplish this is a two-level page table, where
we page the page table.

Example 11.2 (Two-Level Page Table)

A logical address (on a 32-bit machine with 4000 page size) is divided into a
page number consisting of 20 bits and a page offset consisting of 12 bits. Since
the page table is paged, the page number is further divided into a 10-bit page
number and a 100 bit page offset. Thus, a logical address is

(p1, p2, d),

where p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table. p1 and p2 comprise the page number,
while d makes up the page offset. This is known as a forward-mapped page
table. The outer page table has entries that are mapped to entries in another
page table. This page table has pages that are page tables. The various values
inside this inner page table map from the first outer page table, and maps to
different locations in memory.

The address translation scheme is achieved using three memory accesses per request.
p1 specifies the outer page table entry, which then directs us to an inner page table.
p2 then specifies the offset to retrieve the entry, which leads to the frame. d then
specifies the entry in the frame we are to access. In this case, the outer page table
would contain 242 entries. We could add a second outer page, thus requiring 232

entries, with 4 memory accesses per request. The size of an outer or inner page
table is equal to 2n where n is the number of bits specifying that outer or inner
page table.

Example 11.3 (Multi-Level Page Table)

Consider a 64-bit system, with a 4KB page size (212 bits), with 4 bytes per
entry. A single page table would contain 252 entries. Multiplied by 4B per
entry, this results in 254 bytes, or around 18 petabytes.

A page of 4KB can fit 4KB/4B = 1024 = 210 entries. We have 12 bit offsets,
so we need the ceiling of 52 bits divided by 10 bits per level. This results in
six levels. With 6-level hierarchical PT, each memory request would require
7 memory accesses, since 6 accesses are required for translating the logical
address to the physical address, and 1 access is required for the actual memory
location.

• Inverted Page Tables: Rather than each process having a page table keeping
track of all possible logical pages, we can instead track all physical pages in one
shared inverted page table (IPT). IPT has one entry for each real page of memory,
containing a virtual address and an owning process ID. IPT decreases the memory
needed to store each page table, since the IPT size is proportional to the amount
of physical memory available. However, IPT increases the time needed to search
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the table when a page reference occurs. TLB can help accelerate this lookup. For
this reason, shared pages are problematic.

Example 11.4

With 16GB memory and a 4KB page size with 4B per entry, this would result
in a 16MB page table. This page table has around 4 million entries. On
average, a translation would require around 2 million memory accesses.

In the inverted page table architecture, the CPU sends the pid, p, and d comprising
the logical address. A search in a page table is performed to find pid and p together.
The index of this is i. i is the combined with d to obtain the physical address to
physical memory.

• Hashed Inverted Page Tables: This is common in 64-bit systems. The virtual
page number and process ID are hashed into a page table. This page table contains
a chain of elements hashing to the same location, where each element contains a
pid, virtual page number, and a pointer to the next element. The virtual page
numbers are compared in the chain until a match is found. If a match is found, the
corresponding physical frame (the index in the page table) is extracted. This index
is combined with the offset to access physical memory. Otherwise, there is a page
fault. A good hash function can permit an average access time of O(1).

Example 11.5 (Page Table with Some Pages not in Main Memory)

The page table contains gaps, where some pages are not mapped to a corresponding
frame since the valid-invalid bit is set to invalid. The pages with the valid bit set
are associated with a corresponding frame in physical memory. When they are not
in main memory, they can be in the backing store.

§11.2 Page Fault Handling

A page fault is an exception raised when a process accesses a memory page that is not
currently mapped by MMU. For instance, an entry in the page table marked invalid.
Note that with demand paging, the first reference to a page always results in a page fault.
The general page fault handling procedure is as follows:

1. The operating system looks at another table to decide if it is an invalid reference
(resulting in an abort), or the reference is valid but the page not in memory (since
it is in the backing store).

2. Find a free frame.

3. Load the page from the backing store into the frame via scheduled disk operation.

4. Reset the page tables to indicate the page now in memory.

5. Set validation bit to valid.

6. Restart the instruction that caused the page fault
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Example 11.6

When there is an instruction such as load M, we consult the page table. In the
event that the invalid bit is set, we trap to the operating system. The page is in the
backing store, so we bring in the missing page into a free frame in physical memory.
This then resets the page table, then restarts the instruction.

We need to be able to deal with over-allocation of memory when there are no free
frames. We could find some page in memory that is not really in use and page it out
by saving it to the backing store. However, we need an algorithm to find a victim page.
Since we are concerned with performance, we want an algorithm that will result in the
minimum number of page faults. We need a page replacement algorithm that can use
the modify (dirty) bit in a page table entry to reduce the overhead of page transfers,
so that only modified pages are saved to the backing store. The dirty bit is automatically
set by hardware on write access. Basic page replacement is as follows:

1. Find the location of the desired page on disk.

2. Find a free frame:

• If there is a free frame, go to the third step.

• If there is no free frame, use a page replacement algorithm to select a victim
frame.

• If the victim frame is dirty, write it to the backing store.

• Set the invalid bit in the page table pointing to the victim frame.

3. Load the desired page into the new free frame and update the page and frame
tables. The frame table is a simple data structure that keeps track of the free
frames.

4. Continue the process by restarting the instruction that caused the trap.

Remark 11.7. There are now potentially two page transfers for a page fault, further
increasing the effective access time (EAT).

Example 11.8 (Basic Page Replacement)

We first swap out the victim page associated with an index f in physical memory
into the backing store. The page table entries indicate the frame and whether it is
valid or invalid (through the valid-invalid bit). We change it to invalid since we have
swapped the victim page out. We now swap the desired page in, and reset the page
table for the new page.

§11.3 Frame Allocation Algorithms

A frame allocation algorithm determines the amount of frames to give to each process.
For a single-process system, the OS claims some frames and leaves the rest to the running
process. For a multiprogramming system, each process needs a minimum number of
frames (OS/architecture dependent). The maximum depends on the available physical
memory. There are two major allocation schemes:
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1. Fixed Allocation: This includes equal allocation and proportional allocation.
Equal allocation means that after the allocation of frames to the OS, each
remaining process obtains an equal number of frames. Proportional allocation
allocates according to the size of the process. This is dynamic, as the degree of
multiprogramming and process sizes change.

Example 11.9 (Proportional Allocation)

Let si be the size of process pi, S =
∑

si, m be the total number of frames,
and ai be the allocation for pi, where

ai =
si
S
·m.

In a specific example, we have m = 62 frames, s1 = 10, and s2 = 127.
The allocation for these processes would therefore be a1 = 10

137 · 62 ≈ 4 and
a2 = 127

137 · 62 ≈ 57.

2. Priority Allocation: This uses a proportional allocation scheme using priorities
rather than size. If a process generates a page fault, it selects for replacement one
of its own frames, or selects for replacement a frame from a process with lower
priority.

Allocation may also be distinguished as global or local. Global replacement occurs
when a process selects a replacement frame from the set of all frames. One process
can take a frame from another. Process execution time can vary greatly, but there is
greater throughput, so this is more common. Local replacement occurs when each
process selects only from its own set of allocated frames. This results in more consistent
per-process performance, but possibly underutilizes memory.

§11.4 Page Replacement Algorithms

A page replacement algorithm determines the victim frame, and wants to maintain the
lowest possible page-fault rate on both first access and re-access. We evaluate the algo-
rithm by running it on a particular string of memory references (reference string) and
computing the number of page faults on that string. A string is just a list of page numbers,
not full addresses. Repeated access to the same page does not cause a page fault. The re-
sults depend on the number of frames available. Generally, there is an inverse relationship,
as the number of page faults decrease as the number of frames increase. In the following
examples, our reference string will be 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

• First In First Out (FIFO) Algorithm: Replace the page that has been
in memory for the longest time. This could be implemented using a FIFO
queue.
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Example 11.10

The reference string is 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. With
three frames (3 pages can be in memory at a time per process), we obtain 15
page faults. This is because we first fill with 7, then 0, then 1. Then, we replace
the 7 with 2. When we reach 0, this matches with one of the three frames
already present, so we do not have a page fault. On 3 however, we replace the
original 0 with 3, so there is a page fault. The number of page faults varies,
and depends on both the reference string and the number of frames available.
For instance, using the same reference string but with four frames, we obtain
10 page faults.

Bélády’s Anomaly occurs when increasing the number of page frames results in
an increase in the number of page faults for certain memory access patterns. For
instance, the reference string 0, 1, 2, 3, 0, 1, 4, 0, 1, 2, 3, 4 using FIFO with 3 frames
results in 9 page faults, while using FIFO with 4 frames results in 10 page faults.

• Optimal (OPT) Algorithm: Replace the page that will not be used for the
longest period of time. This is not practical as it requires knowing the future.
However, it is useful for measuring how well other non-optimal algorithms per-
form.

Example 11.11

With the reference previous reference frame and three frames, we first have
7, then 0, and 1 appear. Since 7 will not be used soon, it is replace with 2.
When 3 appears, it replace 1. When 4 appears, it replaces 0. When 0 appears,
it replaces 4 since there are no more occurrences of 4. When 1 appears, it
replaces 3 since there are no more occurrences of 3. When 7 appears, it replace
2 since there are no more occurrences of 2. This results in 9 page faults.

• Least Recently Used (LRU) Algorithm: Replace the page that has not been
used in the most amount of time. This uses past knowledge instead of future
knowledge, as it associates the time of last use with each page. This is generally
a good algorithm, and is thus frequently used. LRU and OPT are cases of stack
algorithms that do not exhibit Bélády’s Anomaly.

Example 11.12

Using the same reference string with three frames, 7 appears, followed by 0
and 1. 7 is replaced by 2, then 1 is replaced by 3 (0 is not replaced since it
was recently used). When 4 arrives, this replaces 2 since 0 was just used again.
2 then replaces 3, 3 replaces 0, and 0 replaces 4. 1 then replaces 0 since 3 and
2 were recently used. 0 then replaces 3 and 7 replaces 2 since 1 was recently
used. This results in 12 page faults. This was better than FIFO but not better
than OPT.

LRU can be implemented using a counter or a stack:

1. With the counter implementation, every page entry has a counter. Every time
a page is referenced through this entry, copy the current clock into the counter.
When a page needs to be changed, look at the counters to find smallest value.
A search through the table is needed.
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2. With the stack implementation, we keep a stack of page numbers (for instance,
in a doubly linked list). When a page is referenced, we move it to the bottom.
The stack top contains the least recently used page. Each update is more
expensive than with a counter. However, no search is needed for replacement.

• Clock Replacement Algorithm: Pure LRU needs special hardware and is still
slow. Clock replacement is an approximation of LRU. Frames are organized as a
circular buffer. One pointer (clock hand) is maintained, and points to the page to
be replaced next. If the page has a reference bit equal to 0, we replace it. Otherwise,
we set it to 0 and advance the pointer to the next page. This gives a page a second
chance. This algorithm is very simple and provides good performance. There are
many more page replacement algorithms.

§11.5 Thrashing

If a process does not have enough pages, the page-fault rate is very high. There is a
page fault to get the page, where we replace an existing frame. But, we quickly need
the replaced frame back. A thrashing process results when a process is progressing
slowly due to frequent page swaps. This can lead to an entire system thrashing. Many
processes thrashing results in low CPU utilization. The OS believes that it needs to
increase the degree of multiprogramming, so it adds another process to the system, thus
making things even worse.

Example 11.13

Visually, this can be seen by plotting CPU utilization on the y axis with degree
of multiprogramming on the x axis. CPU utilization increases as the degree of
multiprogramming increases, until it reaches a certain threshold. With increased
multiprogramming, CPU utilization actually decreases. This region is where thrashing
occurs.

There are different ways to deal with thrashing:

• Local Page Replacement: When a process is thrashing, the OS prevents it from
stealing frames from other processes. At least the thrashing process cannot cause
the entire system to thrash.

• Working Set Model: The OS keeps track of pages that are actively used by a
process (working set). The working set of processes changes over time. Therefore,
the OS periodically updates the working set for each process, using a moving time
window. Before resuming a process, the OS loads the working set of the process.

• Page Fault Frequency: We establish acceptable bounds on the page fault rate.
If the actual page fault rate of a process too high, the process gains a frame. If the
actual page fault rate of a process is too low, the process loses a frame.

Example 11.14

Recall that there is an inverse relationship, as the number of page faults
decrease as the number of frames increase. We now set a lower and upper
bound, where we increase or decrease the number of frames respectively should
a process lie outside of that range.
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§11.6 Copy-on-Write

Copy-on-Write (COW) allows parent and child processes to initially share pages in
memory. If either process modifies a shared page, only then is the page copied. The page
table entries need a copy-on-write bit. COW allows more efficient process creation as
only modified pages are copied.

Example 11.15

There are two processes, P1 and P2. Before P1 tries to modify page C, P1 and P2

share page A, B, and C in physical memory. After P1 tries to modify C, the only
change is that now P1 points to a copy of page C located elsewhere in physical
memory instead of C.

§11.7 Disk Structure

Each disk platter has a flat circular shape, with a diameter between 1.8” and 5.25”.
These platters rotate on a spindle. A cylinder is any set of all of tracks of equal diameter
in a hard disk drive. The surface of a platter is logically divided into circular tracks. A
track is a ring of a certain diameter on a platter, while a sector is a segment of that
track. A couple of adjacent sectors form a cluster. The read-write head flies just
above the surface of each platter. A head crash occurs when the head makes contact with
the disk surface, causing permanent damage to the disk. Each head is attached to a disk
arm that moves all heads at the same time. These arms are attached to an arm assembly.

§11.8 Disk Management

A logical block is the smallest unit of transfer between the disk and the memory (for
instance, 512 bytes). The sectors on the disk are mapped to large one-dimensional arrays
of logical blocks, numbered consecutively. Mapping is the process of converting a logical
block number into a physical disk address that consists of a cylinder number, a head
number, and a sector number. On modern disks, this is done by an embedded controller
because geometry is more complicated.

Low-level format or physical format writes low level information to the disk,
dividing it into a series of tracks, each containing some number of sectors, with short gaps
between the sectors. The formatted capacity is about 20% lower than the unformatted
capacity. There are numerous components in a disk sector:

• Preamble: The sector starts with a special bit sequence, cylinder number, sector
number, etc.

• Data: This depends on the format (for instance, 512 bytes).

• Error Correction Code (ECC): This contains redundant information to be
used for correcting read errors.

To use a disk to hold files, the operating system still needs to record its own data
structures onto the disk. It partitions the disk into one or more groups of cylinders,
each treated as a logical disk. Logical formatting then follows, where a filesystem is
made. This involves abstracting blocks into files and directories. The OS can allow raw
disk access for applications that want to do their own block management. Databases for
instance, want to keep the OS out of the way. The boot block is used to initialize the
system. The bootstrap is stored in ROM, and the bootstrap loader program is stored in
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boot blocks of the boot partition. Methods such as sector sparing are used to handle
bad blocks, where a spare sector per track is used if another sector becomes defective.

§11.9 Disk Scheduling

The time required for reading or writing a disk block is determined by three factors:

1. Seek time: The time to move the arm to the correct cylinder.

2. Rotational delay: The time for the correct sector to rotate under the head.

3. Disk bandwidth : The actual data transfer rate. This is calculated for a set of
requests, and is given by the total number of bytes transferred divided by the total
time taken to service all requests.

For a multiprogramming system with many processes, the requests for disk I/O are
appended to the disk queue. The OS maintains separate queues of requests for each disk.
We can improve the overall I/O performance by managing the order in which disk I/O
requests are served by scheduling the requests in the queue based on time required to
move heads:

• First Come First Serve (FCFS) Scheduling is intrinsically fair, but it generally
does not provide fastest service.

Example 11.16

The queue contains 98, 183, 37, 122, 14, 124, 65, and 67. The head starts at
53, and has to move to 98, then 183, followed by the rest of the entries in the
queue. This results in 640 cylinder moves.

• Shortest Seek Time First (SSTF) Scheduling selects the request with the
least seek time from the current head position. Seek time is equal to the time to
move the heads.

Example 11.17

Using the same queue as before with the head starting at 53, we now traverse
65 first, then 67, 37, 14, 98, 122, 124, and 183. This is similar to the Shortest
Job First algorithm in that this may cause starvation of some requests. In this
example, there are 236 cylinder moves.

• SCAN (Elevator) Scheduling occurs when the head continuously scans back
and forth across the disk and serves the requests as it reaches each cylinder.

Example 11.18

using the previous example and starting at 53, we now traverse 37 first, then
14, before reaching 0. Now, we proceed in the opposite direction to reach 65,
67, 98, 122, 124, and finally 183. This results in 208 cylinder moves. Requests
at the other end may wait the longest.

• C-SCAN Scheduling is the same as SCAN in one direction, but when it reaches
the last cylinder, the head returns to the first cylinder.
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Example 11.19

The head starts at 53, reaches 65, then 67, 98, 122, 124, 183, and then 199,
which is the end. It then moves back to 0 before reaching 14, then 37. This
provides a more uniform wait time compared to SCAN.

• C-LOOK Scheduling is a small optimization of C-SCAN, as the head only goes
as far as needed by the next request. Using a similar optimization for SCAN, we
arrive at LOOK Scheduling.

Example 11.20

Starting at 53, it reaches 65, then 67, 98, 122, 124, 183, 14, and then 37.

The performance of a scheduling algorithm depends on the number and types of
requests, the file allocation method, and the location of directories and index blocks.
Either SSTF or LOOK are reasonable choices for the default algorithm. C-LOOK can be
used if we need more consistent wait times. Other scheduling algorithms also consider
rotational latency, and the priority of the task. For instance, demand paging should
receive higher priority.

§11.10 Redundant Array of Inexpensive Disks Structure

Redundant Array of Inexpensive Disks (RAID) employs multiple disk drives to
provide reliability via redundancy, increasing the mean time to failure. This can also
improve performance through parallelization of requests. It is accessed as one big disk.
There are different types of RAID organizations:

• Striping (RAID 0) uses a group of disks as one unit for performance. There is
no redundancy.

• Mirroring (RAID 1) keeps duplicates of each disk.

• Striped Mirrors (RAID 1+0) provides high performance and high reliability.

• Block Interleaved Parity (RAID 4, 5, 6) is similar to RAID 1+0 but with
less redundancy.

A small number of hot-spare disks can be left unallocated. These automatically replace
a failed disk and have data rebuilt onto them.

Example 11.21 (RAID Levels)

RAID 0 is non-redundant striping, RAID 1 is mirrored disks, RAID 2 is memory-style
error-correcting codes, RAID 3 is bit-interleaved parity, RAID 4 is block-interleaved
parity, RAID 5 is block-interleaved distributed parity, and RAID 6 is P + Q
redundancy.

§11.11 I/O Hardware

I/O devices fall under the following primary categories:
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• Block Devices: These devices store information in fixed-size blocks such as 512
bytes to 32KB. Each block has its own address. Data is transferred in units of
one or more entire blocks. Read or write can be done independently of each other.
Examples include hard disks, CD-ROM, and USB.

• Character Devices: These devices deliver or accept a stream of characters,
without regard for any block structure. They are not addressable, and provide no
seek operations. Examples include printers, network interfaces, keyboards, and
mouses.

• Other Devices: This includes clocks or timers.

§12 June 22, 2017

§12.1 Filesystems

To achieve long term storage, it is essential that it must be possible to store a very large
amount of information, the information must survive the termination of the process using
it, and multiple processes must be able to access this information concurrently. A disk
can be thought of as a linear sequence of fix-sized blocks that support the two operations
of reading block j, and writing to block j. This is very similar to memory, but it is
persistent, and much slower.

§12.2 File Structure

A file is an abstraction of long term storage, implemented by the OS. Anything can be
stored in a file, as long as it can be organized into a sequence of bytes. For instance, this
may be source code, executables, images, movies, text, etc. From the perspective of the
OS, the process sees file through contiguous logical and virtual address spaces. A file
contains a sequence of bytes, which can be individually addressed. The OS simply maps
these files onto physical devices, as it generally does not care about the contents of the
files. The file creator decides on the contents of the file, including the file format and
the internal structure. The file creator also decides the meaning of the file’s contents.
This can create an even higher level abstraction. For instance, we can treat a file as a
sequence of bits, numbers, records, etc.

A byte sequence is the most common file structure, but other structures are also possible.
However, these other structures can be emulated by byte sequences.

Example 12.1

A byte sequence contains a sequence of bytes. A record sequence contains a sequence
of records, where a record contains more information than a single byte. We can
also have tree structures.

§12.3 File Naming

Files have textual names that are given to the files at creation time, but these can be
changed later. There are different file-naming rules on different systems. For instance,
there may be constraints on maximum filename lengths (at least 8), allowed characters,
capitalization, or file extensions. File extensions may be enforced, or follow conventions.
They may also be considered separate from the filename, or considered a part of the
filename.
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§12.4 File Formats

Many systems support special file types on top of regular files and directories:

• Regular files are text or binary.

• Directories are special files for maintaining FS structure.

• Character special files are for I/O on character devices. For instance, /dev/random.

• Block special files are for I/O on block devices. For instance, /dev/sdb0.

Regular files can have custom types as well (file format or file type). These are
determined by the file creator. If an OS recognizes the file format, it can operate on the
file in reasonable ways. For example, it could use an appropriate program to open the
file.

Example 12.2

Windows uses file extension to determine the file format. Running file in a bash
script followed by a list of files results in a description of each file. On the other
hand, UNIX uses magic number techniques to determine the file format. Thus,
the extension is only a convention. In particular, the format is inferred by inspecting
the first few bytes of a file. For example, #!/bin/bash.

Example 12.3

An executable file contains in its header the magic number, text size, data size, BSS
size, symbol table size, entry point. Flags reside at the bottom of the header, after
some other information is stored after the entry point. This is then followed by text,
data, relocation bits, and the symbol table. An archive contains a header, followed
by an object module. This alternates as we see a repeating pattern of headers and
object modules in an archive. The header contains the module name, data, owner,
protection, and size.

§12.5 File Attributes

File attributes: These vary from one OS to another, but typically consist of the
following:

• Name: The symbolic file name is the only information kept in human readable
form.

• Identifier: A unique tag that identifies the file within the FS.

• Type: This is needed for systems that support different file types, such as block
devices.

• Location: A pointer to the location of the file on a device.

• Size: The current size of the file.

• Tme and Date: The time of creation, last modification, or last access. This is
used for usage monitoring.
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• Protection: Access control information such as read, write, and execute.

• User ID: The owner or owners.

There are many variations of file attributes, including extended file attributes such as file
checksum. This information is often kept in the directory structure. File attributes are
not stored in the file, since they are stored elsewhere. Thus, even an empty file takes up
space, as we need to store the file attributes.

§12.6 File Operations

There are different operations that can be performed on files. Most systems allow the
following operations on files:

• Create: A file is created with no data.

• Delete*: When the file is no longer needed, it has to be deleted to free up disk
space,

• Open: Before using a file, a process must open it. The OS can fetch attributes
and a list of disk addresses into main memory for rapid access on later calls.

• Close: Free up space in memory by flushing unwritten data from memory to disk.

• Read: Read data from the current position.

• Write: Write data at the current position.

• Append: This is a special type of write on some systems.

• Seek: Change the current position.

• Get attributes*: For instance, obtaining the size of a file.

• Set attributes*: For instance, setting permissions.

• Rename*: Change the filename.

Remark 12.4. The starred operations do not operate on the files themselves. Instead,
it operates on that file’s metadata.

§12.7 Open Files

The OS needs to manage open files. To do this, it keeps several data structures in memory.
An open-file table tracks open files, per-process and system-wide. The open-file table
contains he file pointer is a pointer to the last read and write location, and is per
process that has the file open. The open-file table also contains a file-open count is a
counter of the number of times a file has been opened. This is used to allow removal of
data from an open-file table when the last processes closes it. This is system wide. The
open-file table also contains the permissions, with a pointer to file contents. This is also
system wide.
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Example 12.5

In the user space, we call read(index). This index is sent from the user space into
kernel memory, where it first passes the per-process open-file table before reaching
the system-wide open-file table. It is then sent out of kernel memory into the data
blocks in secondary storage. Alternatively, a file-control block from secondary storage
may be sent into the system-wide open-file table in kernel memory.

§12.8 File Access

There are generally two types of file access. This applies to reading and writing:

1. Sequential Access: This is the most common. A file is accessed byte-by-byte
from beginning to end. There is no skipping, and no out-of-order access. Sequential
access can be rewound. For example, open, read, read, read, rewind, read,

....

2. Random Access: This can access any byte in any order, and is usually imple-
mented using a seek(position) call. For instance, open, read, read, read,

seek, read, read, seek, read, ...

§12.9 File Locking

File locking is provided by some operating systems and file systems. These are similar
to reader-writer locks. A shared lock is similar to a reader lock, as several processes
can acquire concurrently. An exclusive lock is similar to a writer lock. File locking
mediates access to a file during open(). Mandatory file locking occurs when access is
denied depending on the locks held and requested. Advisory file locking occurs when
processes can find the status of locks and decide what to do.

§12.10 Directories

A a filesystem is a collection of files, where a file is the basic unit in a filesystem. Files
are organized in a directory structure, which is usually a tree with one or more levels.
This is implemented through directories which organizes files and store metadata
about those files (such as file names). A filesystem must be mounted before it can be
accessed.

A directory is implemented as a special file. The directory file contains entries, where
each entry can be a file or directory (subdirectory). If subdirectories are not allowed,
then we have a single-level directory system. This has limited uses, such as for
cameras. If subdirectories are allowed , then we have a hierarchical directory system.
These see widespread use.

Example 12.6

A single-level directory consists of a root directory that branches into various files. A
hierarchical directory system contains a root directory, that branches into multiple
user directories. These user directories may branch further into user subdirectories,
or into user files.
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§12.11 Path Names

A path name generally includes a path separator / (forward slash). File paths are of the
form

dir1/dir2/.../dirn/filename.

The root directory is denoted with /. An absolute path name begins at the root.
Every process has a working (current) directory. A relative path name defines a
path from the current directory.

Example 12.7

An absolute path name is /usr/jim, while a relate path name is ./banker or
../..bin/cat.

Every directory starts with one of two entries. This may be a pointer to the current
directory with . (dot), or a pointer to the parent directory with .. (dotdot). The
pointer to the current or parent directory with dot and dotdot cannot be deleted. They
are present even in empty directories, as they are just pointers.

Example 12.8

It is possible for different path names to refer to the same path. For instance,
/usr/jim and /./etc/../lib/./../usr/pavol/../jim ../../../usr/jim may
refer to the same file.

§12.12 Directory Operations in UNIX

There are different directory operations that can be performed:

• Create: An empty directory is created with . and .. entries.

• Delete: Only an empty directory can be deleted. It is the case that . and .. are
a part of the empty directory.

• Opendir: This is analogous to open for files.

• Closedir: This is analogous to close for files.

• Readdir: Returns the next entry in an open directory

• Rename: This is just like file rename.

• Link: This is a technique that allows a file to appear in more than one directory

• Unlink: A directory entry is removed. If the file being unlinked is only present in
one directory (the normal case), it is removed from the file system. If it is present
in multiple directories, only the path name specified is removed. In UNIX, the
system call for deleting files (discussed earlier) is, in fact, unlink.

§12.13 Implementation of Filesystems

We make use of several in-memory structures. These structures are used for both FS
management and performance improvement:
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• System-wide open-file table: There is an entry for each open file. For example,
the starting block number.

• Per-process open-file table: This provides pointers to system-wide open-file
table + file pointer,...

• Mount table: This includes information about each mounted volume.

• Directory-structure cache: This contains the directory information of recently
accessed directories.

• Buffers: These are file-system blocks when they are being read from or written to
a disk.

Example 12.9 (Typical Filesystem Layout)

The following example occurs over the entirety of the disk. The first part is the
master boot record (MBR). This is followed by the partition table that indicates
the start and end of each partition. The remainder of the disk is several disk
partitions. A disk partition consists of a boot block (bootstrap program), followed
by a superblock (FS parameters such as type), free space management (free blocks),
I-nodes (per file or directory information detailing the blocks that belong to each
file), the root directory (entries in /), and finally the files and directories (where the
contents of the directory are files and subdirectories).

Nearly all filesystems split files up into fix-sized blocks. The file size is rounded up to the
nearest multiple. Most filesystems suffer from internal fragmentation. The filesystem
block size is usually a multiple (2n) of the underlying disk block size (clusters). The
FS blocks of one file are not necessarily adjacent, as it may be a fragmented file. In
this case, there could be seek time performance issues. Performance and space utilization
are inherently in conflict. That is, utilization decreases as performance increases.

Partitions can contain a contain a filesystem. Alternatively, a partition can be raw
when it is just a sequence of blocks with no file system. The boot block can point to
a boot volume or a boot loader, which is a set of blocks that contain enough code to
know how to load the kernel from the file system The boot block can also point to a
boot management program for multi-OS booting. The root partition with a filesystem
contains the OS, which is mounted at boot time as the root directory ’/’. The other
partitions can hold other operating systems, other file systems, or be raw. These other
partitions can be mounted automatically during boot, or manually after the boot is done.
At mount time, file system consistency is checked. If is it not consistent, it is fixed and
mounting is attempted again. If all metadata is correct, then we add it to the mount
table and allow access.

§12.14 Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-oriented way of implement-
ing file systems. VFS allows the same system call interface (the API) to be used for
different types of file systems. It separates file-system generic operations from im-
plementation details. Implementation can be one of many file systems types, or even
network file systems. VFS dispatches operation to appropriate file system implementation
routines.
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Example 12.10

The API is to the VFS interface, rather than any specific type of filesystem. Thus,
we can represent this graphically in a tree structure. Te file-system interface points
to the VFS interface. This points to local file system type 1, local file system type 2,
and remote file system type 1. These point to disk, disk, and network respectively.

In Linux, there are four object types. These are the inode, file, superblock, and dentry.
VFS defines the set of operations on the objects that must be implemented. Every
object has a pointer to a function table. The function table has addresses of routines
to implement that function on that object. For instance int open(...) opens a file,
int close(...) closes an opened file, ssize t read(...) reads from a file, ssize t

write(...) writes to a file, and int mmap(...) memory maps a file. A developer of a
new FS needs to implement VFS API. Only then can the FS be mounted by Linux.

Directories can be implemented in different ways:

• Linear Lists: It could be implemented as a linked list of filenames with pointers
to the file blocks. This is simple to program, but time consuming to execute. This
offers linear search time. It could maintain order alphabetically via linked lists or
B+ trees.

• Hash Tables : It could also be implemented as a linear list with a hash data
structure. This decreases directory search time. However, there may be collisions
where two filenames hash to the same location. This method is only good if entries
are fix sized, or a chained overflow method is used.

Linux (ext2) uses linked list and hash table with balanced trees.

§12.15 Allocation Methods

An allocation method refers to how disk blocks are allocated for files:

• Contiguous Allocation: Each file occupies a set of contiguous blocks. This offers
best performance in most cases. It is also simple, as only the starting location
(block number) and length (number of blocks) are required. However, we may
encounter problems such as finding space for files, knowing the file size at creation
time, external fragmentation after file deletion, and the need for compaction
offline (downtime) or online (reduced performance). This is also known as defrag-
mentation. Contiguous allocation is useful for tapes and read only devices such
as CD-ROMs.

Example 12.11

To map from logical to physical address, the logical address is split into q upper
bits and r lower bits. The physical address start is computed as q added to
the starting address. The displacement into the block is equal to r. Different
files start at different locations, and have a fixed length associated with them.
They occupy contiguous locations in memory.

• Linked Allocation: Each file is stored as a linked list of blocks. Each block
contains a pointer to the next block, where files end at NULL pointers. There is no
external fragmentation, so no compaction is needed. However, separate free space
management needed to maintain a linked list of free blocks. Reliability can be a
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problem, since we may lose a block due to disk failure. A major problem is that
locating a block can take many I/O and disk seeks. Logical address to physical
address mapping requires traversing the list. We could cache the next pointers, but
we would need to read the entire file first. We could improve efficiency by clustering
blocks into groups, but that increases internal fragmentation.

Example 12.12

In linked allocation, a start and end are indicated for a file. The block consists
of a pointer, and data. Files may contain instructions that exist at different
locations in memory. The final location is indicated with −1.

• File Allocation Tables (FAT): This is a variation of linked allocation. The
beginning of an FS volume has a table, indexed by block number. The table
contains all pointers, one for each block. There is one FAT for the entire disk, and
directory entries contain indices into the FAT. This is much like a linked list, but
faster on disk and is cacheable. Additionally, new block allocation is simple. FAT
provides easier random access, but the entire table must be in memory at all times
to perform random access.

Example 12.13

The directory entry consists of a file name, some information, and a start
block. This start block points to an entry in the FAT. This entry then points
to another entry, and so on.

• Indexed Allocation (I-Nodes): Each file has its own index blocks of pointers
to its data blocks. This block is called an i-node. It is similar to FAT, but per file
rather than per entire FS. An i-node block contains pointers to blocks belonging to
the file, and various file attributes such as the file size in bytes, device ID, owner,
permissions, timestamps, and link count. Notice that it does not store the filename,
since the directory entry is used to associate the filename with the i-node. A dentry
consists of the filename along with a pointer to the i-node. Indexed allocation easily
links files, as different filenames can point to the same file (hard link). I-nodes are
advantageous since random access is reasonable (we only need to keep the i-nodes
for opened files in memory), file size is generally not limited, and files can have
holes. However, at least one additional block is required for each file to point to
everything else.

Example 12.14 (Indexed Allocation)

A directory entry consists of a filename along with an index block. For instance,
in block 19, there is an i-node that points to 9, 16, 1, 10, and 25. These are
the locations of blocks belonging to the file.

71



David Ng (July 4, 2017) Principles of Operating Systems

Example 12.15 (I-Nodes in Linux (ext2))

Consider a block size of 1KB, with block addresses of 4B. A single i-node with
12 direct entries has a max file size of 12KB. Adding a single indirect 1KB block
can have 1KB/4B = 256 entries. The max file size is 256KB+12KB = 268KB.
Adding double indirect or 256 blocks each with 256 addresses results in a max
file size of around 216 blocks, which is approximately 64MB. Adding triple
indirect results in a max file size of around 224 blocks, which is approximately
16GB. The ext3 max file size is around 2 terabytes, while the ext4 max file
size is around 16 terabytes (using 48 bit addresses).

Example 12.16 (Hard and Soft Links)

To hard link file1.txt to file.txt, we use ln file.txt file1.txt. The
hard link points to the same inode as file.txt. If we delete the original file,
then file1.txt will still work. We can create a soft link with ln -s file.txt

file2.txt. This soft link points to the same filename of file.txt. This, if
we delete the original, file2.txt will be broken. Thus, a hard link points to
the i-node, while a soft link points to the filename. Hard links can be created
only on regular files. Thus, we cannot hard link directories, as they could lead
to cycles in the FS. Symbolic links can link anything, including directories,
special files and other symbolic links.

§12.16 Free Space Management

File systems maintain free space lists to track available blocks:

• Bit Vector (Bitmap): A bit is set to 1 if it is free, and is set to 0 if it is occupied.
The block number is calculated as the number of bits per word multiplied by
the number of 0 valued words, plus the offset of the first 1 bit. The CPU has
instructions to return the offset within word of the first 1 bit. Bitmaps require
extra space. It is easy to get contiguous files.

Example 12.17

A block size of 4KB = 212 bytes and a disk size of 240 bytes (1 terabyte) has a
disk size of 240/212 = 228 blocks. Since 1 bit is needed per block, this means
that we need 228 bits of 220 bytes to store the bitmap. This is around 1MB.
If we are using clusters of 4 blocks each, this results in a 256KB table.

• Linked Free Space List (Free List): There is no waste of space. However, we
cannot get contiguous space easily. There is no need to traverse the entire list so
long as the number of free blocks is recorded. The free space list head simply points
to the location of the next free space.

There are different free space management techniques:

• Grouping: Modify linked lists to store the addresses of the next n− 1 free blocks
in the first free block, plus a pointer to the next block that contains free block
pointers (like this one).
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• Counting: Because space is frequently contiguously used and freed, we keep the
address of the first free block and the count of the following free blocks. A free
space list then has entries containing addresses and counts.

• Space Maps: Divide the device space into metaslab units, each representing a
chunk of manageable size. Within each metaslab, a counting algorithm is used to
keep track of free space.

§12.17 Performance

Newer CPU (2016) can do about 300000 million instructions per second. Typical disk
drives at 7200RPM can do around 100 input/output operations per second. 300000MIPS/100 =
3 billion instructions during one disk I/O. Fast SSD drives provide about 100000IOPS,
so this results in 300000MIPS/100000 = 3 millions instructions during one disk I/O.
Expensive SSD arrays can deliver 10000000 IOPS. This is still around 30000 instructions
during one disk I/O. It is important to try to minimize the number of I/O operations.
This can be done by trying to group read/write. Bytes per second is calculated as the
IOPS multiplied by the transfer size.
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